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The characteristics of tunnel junctions formed between n- and p-doped graphene are investigated
theoretically. The single-particle tunnel current that flows between the two-dimensional electronic
states of the graphene (2D–2D tunneling) is evaluated. At a voltage bias such that the Dirac points
of the two electrodes are aligned, a large resonant current peak is produced. The magnitude and
width of this peak are computed, and its use for devices is discussed. The influences of both
rotational alignment of the graphene electrodes and structural perfection of the graphene are also
discussed. VC 2012 American Institute of Physics. [doi:10.1063/1.3686639]

I. INTRODUCTION

Two-dimensional (2D) electron systems have played a
very important role in the development of electronic devices,
including metal-oxide-semiconductor field-effect transistors
made from silicon and high electron mobility transistors
made from III–V semiconductor heterostructures.1 One
lesser-known device utilizing 2D electron gases (2DEGs) is
a tunnel junction between two such gases, i.e., 2D–2D tun-
neling. Prior investigations of 2D–2D tunneling have been
carried out on coupled electron gas systems in closely placed
quantum wells in AlGaAs/GaAs heterostructures.2–8 Consid-
ering the case of unequal doping between the 2DEGs, it was
demonstrated experimentally that, at a voltage bias corre-
sponding to aligned band structures of the 2D systems, a
large, sharp peak in the tunnel current occurs. We refer to
this peak as a resonant peak in the tunneling. It was argued
in the prior work that the width of this peak was temperature
independent2–4 (except possibly from inelastic effects).

With the advent of a new 2D electronic system, graphene,
it is worthwhile to consider how 2D–2D tunneling could be
employed in this system. In this work we theoretically investi-
gate that question, examining graphene-insulator-graphene
(GIG) tunnel junctions. We focus in particular on the situation
when the graphene sheets have unequal doping, e.g., one is n-
type (electron doped) and the other is p-type (hole doped). We
derive formulas for the voltage dependence of the current,
results that were not obtained, to our knowledge, in any prior
2D–2D tunneling work (although Ref. 3 provided a step in
this direction). A large current peak occurs at the voltage
when the band structures of the graphene sheets are energeti-
cally aligned (and also the graphene sheets are rotationally
aligned in real space), and this peak is characterized in terms
of its magnitude and width. We consider finite-size areas for
the graphene sheets, as might occur physically due to the lim-

ited size of structurally perfect regions in the graphene, some-
thing that we denote by a “structural coherence length” L. We
find that the magnitude of the resonant current peak is propor-
tional to the electrode area times L and its width is propor-
tional to 1=L. Compared to other nonresonant aspects of the
current, very high degrees of nonlinearity in the current–-
voltage (I–V) relationship remain even for values of L as low
as 100 nm or less.

Clearly this sort of highly nonlinear I–V relationship has
potential applications for electronic devices. The sharp reso-
nant current peak at small voltages presents a compelling
case for being integrated into a three-terminal device where
the third terminal (a capacitive gate) can move the effective
bias on and off the resonance condition, thereby enabling
logic operations. In fact, precisely this sort of device, a BiS-
FET utilizing a graphene bilayer, has been recently proposed
as a low-power building block for logic operations.9,10 The
operation of that device, however, is based on many-body
excitonic condensate effects, which will be observed only
below a certain characteristic critical temperature.6,8–10 Our
work is for single-particle tunneling, where the condensate is
not required and hence there is no critical temperature. On
the other hand, devices utilizing a single-particle tunneling
resonance do require, at least for optimal performance, rota-
tional alignment of the graphene electrodes and a well-
ordered insulating layer (to minimize momentum scattering),
things that are not needed for the excitonic mechanism of the
BiSFET. Both types of devices are quite impervious to the
effects of thermal broadening, and both devices are also
intrinsically fast as they rely on tunneling.

In Sec. II we present our general theoretical method
using the Bardeen transfer Hamiltonian approach, followed
by applications of that to both undoped and doped GIG junc-
tions. The contributions to the current are described analyti-
cally, with finite-size effects being considered in particular.
Numerical results for the current are provided in Sec. III, and
in Sec. IV we discuss the results and briefly consider possible
fabrication of GIG junctions and extension to three-terminal
devices. The paper is summarized in Sec. V.
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II. THEORY

A. Qualitative considerations

The nonlinear I–V characteristic of a GIG junction with
complementary doping in the graphene electrodes is easily
seen by considering the states available for tunneling, as
illustrated in Fig. 1. We assume that the left-hand electrode
is n-doped and the right-hand electrode is p-doped, with
chemical potentials (Fermi levels) lL ¼ EDL þ DEL and
lR ¼ EDR # DER for specific DEL and DER, where EDL and
EDR are the respective Dirac points. For simplicity we
assume DEL ¼ DER $ DE > 0. For applied voltage bias V
between the electrodes we have lL # lR ¼ eV. It is impor-
tant to note that, for our situation of graphene electrodes, the
value of DE will depend not only on the doping of the elec-
trodes but also on the applied bias V and the geometric ca-
pacitance C of the GIG junction (due to the quantum
capacitances of the graphene electrodes).11 This dependence
of DE is described in the upcoming Sec. II E, and for the
present discussion we take DE to be a fixed quantity.

Let us first consider the nonresonant case when the band
structures are not aligned, eV 6¼ 2DE, as in Figs. 1(a) and
1(b) for voltage ranges of eV < 2DE and eV > 2DE, respec-
tively. Then, given the requirement of momentum conserva-
tion (for large area, rotationally aligned graphene electrodes,
and neglecting scattering in the insulator), there is only a sin-
gle ring of k-points that can satisfy that, located at an energy
midway between the Dirac points as shown in Figs. 1(a) and
1(b). The circumference of these rings varies linearly with
voltage, producing a linear dependence of the current on
voltage as pictured in the I–V curve of Fig. 1(d).

Now we turn to the resonant situation, with eV ¼ 2DE.
As pictured in Fig. 1(c), there are states existing over all
energies that satisfy the requirement of k-conservation. The
resulting current is relatively large, scaling superlinearly
with the area of the electrodes (as the number of states
involved increases with the area). This current is pictured as
the upward pointing arrow in Fig. 1(d). As will be shown in
the following sections, this resonant peak in the current has
an amplitude that scales as the area of the electrode times a
“structural coherence length” L, with L being just

ffiffiffi
A
p

for a
perfectly crystalline graphene sheet with area A, or a typical
length between defects in the sheet, whichever is less. The
width of the resonance peak scales as 1=L.

B. Formalism

We compute tunnel currents using the Bardeen transfer
Hamiltonian approach,12,13
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X
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where a and b label states in the left-hand (L) and right-hand
(R) electrodes with energies of Ea and Eb, respectively,
gS ¼ 2 is the spin degeneracy, gV is the valley degeneracy,
s#1
ab and s#1

ba are the tunneling rates for electrons going
L! R or R! L, respectively, and fL and fR are Fermi occu-
pation factor for the left- and right-hand electrodes,
fLðEÞ ¼ 1þ exp ðE# lLÞ=kBT½ (f g#1 and fRðEÞ ¼ 1þ expf
ðE# lRÞ=kBT½ (g#1. The tunneling rates are given by

1

sab
¼ 2p

!h
Mab
&& &&2dðEa # EbÞ ¼

1

sba
; (2)

where

Mab ¼
!h2

2m

ð
dS W)a

dWb

dz
#Wb

dW)a
dz

( )
(3)

is the matrix element for the transition with m being the free
electron mass and Waðr; zÞ and Wbðr; zÞ being the wavefunc-
tions of the left- and right-hand electrodes, respectively. The
surface integral in Eq. (3) is evaluated over a plane located
midway between the two electrodes. The current thus
becomes

I ¼ gV
4pe

!h

X

a;b

Mab
&& &&2 fLðEaÞ # fRðEbÞ

" #
dðEa # EbÞ: (4)

We consider the situation for graphene, with two identical
atoms, labeled 1 and 2, per unit cell. The wavefunction for
wavevector k can be written in terms of basis functions Ujk

(j ¼ 1; 2) on each atom as Wðr; zÞ ¼ v1ðkÞU1kðr; zÞ
þ v2ðkÞU2kðr; zÞ. The basis functions themselves have
Bloch form, Ujkðr; zÞ ¼ expðik * rÞujkðr; zÞ=

ffiffiffi
A
p

, where
ujkðr; zÞ is a periodic function and A is the area of the elec-
trode. These periodic functions are of course localized
around the basis atoms (i.e., as 2pz orbitals) of each

FIG. 1. (Color online) (a)–(c) Band diagrams for a doped GIG junction, at
voltages of (a) V < 2DE=e, (b) V > 2DE=e, and (c) V ¼ 2DE=e. In (a) and
(b), states satisfying k-conservation (i.e., in limit of large electrode area) are
shown by the rings located at an energy midway between the Dirac points
for the two electrodes. In (c), states at all energies satisfy k-conservation. (d)
Qualitative current–voltage (I–V) characteristic.
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graphene electrode, but in the plane midway between the
electrodes the functions are spread out. Thus, as a function
of the 2D radial coordinate r in this plane, the ujkðr; zÞ func-
tions will vary only weakly and that dependence will not
largely affect the integral. [Importantly, nodes in the wave-
function are included in the v1ðkÞ and v2ðkÞ factors, speci-
fied in the following].

We therefore approximate the tunneling matrix element,
incorporating the small influence of the radial dependence of
the ujkðr; zÞ into numerical constants, and assuming for the z-
dependence the usual tunneling form 2je#jd=D, where d is
the separation of the electrodes, j is the decay constant of
the wavefunctions in the barrier,14 and D is a normalization
constant for the z-part of the wavefunctions in the graphene,
i.e., approximately equal to an interplanar separation in
graphite.13,15 (For very thin barriers this form for the
z-dependence may not be so appropriate, but its order of
magnitude should still be correct). For example, for a term in
Eq. (3) involving the u1kLðr; zÞ part of Waðr; zÞ and the
u1kRðr; zÞ part of Wbðr; zÞ we assume

ð
dSeiðkR#kLÞ*r u)1kL

du1kR

dz
# u1kR

du)1kL

dz

( )

+ 2j
D

e#jdu2
11

ð
dSeiðkR#kLÞ*r; (5)

where u11 is a constant of order unity. This constant is also
taken to have no dependence on kL or kR, i.e., employing an
effective-mass approximation in which the periodic func-
tions are evaluated at the band extrema. In the same sense,
we replace the total wavevector by k0 þ k, where k0 is the
wavevector of the band extrema and k is the component of
the wavevector relative to that. The term involving u2kLðr; zÞ
and u2kRðr; zÞ is approximated in an identical way, yielding
constant u22, but with u22 ¼ u11 as the atoms in the unit cell
are identical. Cross terms yield constants u12 ¼ u21 that also
have order unity (although with magnitude likely to be less
than u11). For the v1ðkÞ and v2ðkÞ factors, they have the val-
ues well known for graphene in a nearest-neighbor tight-
binding approximation16

v1

v2

* +
¼ 1ffiffiffi

2
p e,ih k=2

se6ih k=2

* +
; (6)

where hk is the angle of the relative wavevector, the upper
sign is for a band extremum at the K point of the Brillouin
zone and the lower for a K0 point, and with s ¼ þ1 for the
conduction band (CB) or #1 for the valence band (VB).

For rotationally misaligned graphene electrodes, we
consider tunneling between bands in the respective
electrodes with extrema that differ by a vector Q, i.e.,
k0;R ¼ k0;L þQ with a Q vector such that k0;L

&& &&
¼ k0;R

&& && ¼ k0;L þQ
&& && ¼ 4p=3a (the magnitude of the wave-

vector at the K and K0 points), where a ¼ 0:2464 nm is the
graphene lattice constant. The matrix element is then found
to be

Mab ¼
!h2j

2AmD
e#jdgxðhL; hRÞ

ð
dSeiQ*reiðkR#kLÞ*r; (7)

where

gxðhL; hRÞ ¼ u2
11 eiðhL,h0RÞ=2 þ sLsRe#iðhL,h0RÞ=2
, -

þ u2
12 sReiðhL6h0RÞ=2 þ sLe#iðhL6h0RÞ=2
, -

; (8)

with the upper sign used for tunneling between like valleys
(i.e., K to K, or K0 to K0) and the lower sign for unlike
valleys (K to K0, or K0 to K), where h0R $ hR þ x with
x ¼ 2 sin#1ð3aQ=8pÞ being the misalignment angle
between the electrodes, and where we have defined hL $ hkL

and hR $ hkR . For the case of nonzero Q (nonzero x), the
values of the uij constants will change, but as argued previ-
ously these constants have little effect on the resulting cur-
rent (at least for moderately thick barriers) so we do not
explicitly consider that change. We note that the gx factor of
Eq. (8) has only a relatively small influence on the final
results for the tunnel current, but it is nevertheless included
in our analysis for completeness.

For rotationally aligned electrodes we have Q ¼ 0, so
that the integral on the right-hand side of Eq. (7) approaches
the delta-function dðkR # kLÞ for A!1. Of particular
interest in our discussion in the following is the situation for
finite-area tunnel junctions, in which case we will want to
evaluate this integral for moderate-sized values of A. It is
convenient to work in terms of the square of the integral
from the right-hand side of Eq. (7),

KðDkÞ $ 1

A

ð
dSeiDk*r

&&&&

&&&&
2

; (9)

with Dk ¼ kR # kL, and where for large A,
KðDkÞ! d2

kL;kR
¼ dkL;kR . In Sec. II D we consider other for-

mulas and/or approximations to KðDkÞ as appropriate to the
case when A is not so large. Incorporating Eqs. (7) and (8)
into Eq. (4), and with gV ¼ 2 for graphene, we arrive at the
expression for the current (with states labeled by kL or kR)

I ¼ 8pe

!h

!h2je#jd

2mD

( )2X

B

X

kL;kR

g0ðhL; hRÞj j2 fLðEkLÞ½

#fRðEkRÞ(dðEkL # EkRÞKðDkÞ; (10)

where g0ðhL; hRÞ is defined by Eq. (8) with x ¼ 0.
The sum over B in Eq. (10) indicates the different

regimes of relative band alignments between the electrodes,
labeled I, II, or III in Fig. 2, that must be considered in eval-
uating the current. For example, in region I we have
EkL ¼ EDL þ !hvFkL and EkR ¼ EDR þ !hvFkR, where vF is the
Fermi velocity (+ c=300), so that the argument of the
energy d-function in Eq. (10) becomes EkL # EkR

¼ EDL # EDR þ !hvFkL# !hvFkR ¼ eV # 2DE þ !hvFðkL # kRÞ.
In evaluating Eq. (10) this energy d-function can be used to
eliminate the sum over the kR magnitude, with
kR ¼ kL þ eV0=!hvF where we have introduced
eV0 $ eV # 2DE (for V0 < 0, the constraint that kR - 0
must explicitly be applied). The current from region III is
identical to that from region I. In region II we find
kR ¼ e V0j j=!hvF # kL with 0 . kL . e V0j j=!hvF.
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Considering Eq. (10) in the limit of large A, we have
kL ¼ kR $ k as KðDkÞ! dkL;kR , so that the equation
becomes

I ¼ 8pe

!h

!h2je#jd

2mD

( )2X

B;k

g0ðhk; hkÞj j2 fLðEL;kÞ
"

#fRðER;kÞ(dðEL;k # ER;kÞ; (11)

where we have added indices L and R to the energies to
make it clear which electrode they are associated with. We
note that for tunneling between like valleys and unlike
bands, gðhk; hkÞj j ¼ 2u2

12 sinðhkÞ, with the term involving
u2

11 having been eliminated. This cancellation occurs because
of orthogonality between the lateral portions of the VB and
CB wavefunctions, but nevertheless nonzero tunnel current
is still produced by the u12 cross-term.

In the following section we evaluate Eq. (10) for large-
area rotationally aligned electrodes, and in the section after
that we consider finite-area rotationally aligned electrodes.
The case of rotational misalignment is considered in the nu-
merical results of Sec. III.

C. Tunneling current for large-area graphene sheets

In this section we focus our discussion on large elec-
trode areas with no misorientation between the electrodes
(Q ¼ 0). We first consider an undoped GIG junction,17 the
band structure for which is presented in Fig. 3. Given the
requirement of k-conservation as enforced by Eq. (9) for
large A, there is only a single ring of k-points that satisfy
that, located at an energy midway between the Dirac points
as shown in Fig. 3. Thus, for V > 0 we need only consider
VB states for the left electrode, EL;k ¼ EDL # !hvF k, and CB
states for the right electrode, ER;k ¼ EDR þ !hvF k (or vice

versa for V < 0). Thus, EL;k # ER;k ¼ EDL # EDR # 2!hvF k
¼ eV # 2!hvF k. Substituting into the d-function of Eq. (11),
and evaluating the sum over k as an integral in the usual
way, yields the current for tunneling between like valleys,

I ¼ 8pe

!h

!h2je#jd

2mD

( )2
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2p
2u4

12
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0

kdk fLðEL;kÞ
"

#fRðER;kÞ(dðe Vj j# 2!hvFkÞ; (12)

where kmax ¼ e Vj j=!hvF. For tunneling between unlike val-
leys the term u2

12 is replaced by u2
11. The integral is easily

evaluated using the d-function, yielding for zero temperature

I ¼ 8pe
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!h2j e#jd
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2!hvF
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¼ e2A

2!h

!hju2
12e#jd

mDvF

( )2

V:

(13)

Now let us turn to a doped GIG junction. We first consider the
nonresonant case when the band structures are not aligned,
i.e., eV 6¼ 2DE, as in Figs. 1(a) or 1(b). The situation then is
similar to the undoped junction, with a single ring of k-values
satisfying wavevector conservation for each particular volt-
age. The derivation of the tunnel current is very similar to the
undoped case. For example, for the situation presented in Fig.
1(a) we have for the relevant states that EL;k ¼ EDL þ !hvFk
and ER;k ¼ EDR # !hvFk so that EL;k # ER;k ¼ EDL # EDR

þ 2!hvF k ¼ eV # 2DE þ 2!hvF k. Thus, in Eq. (11) we have,
dðEL;k # ER;kÞ ¼ dðeV # 2DE þ 2!hvF kÞ. Therefore, the cur-
rent at zero temperature is given by

I ¼ e2A

2!h

!hju2
12e#jd

mDvF

( )2
2DE

e
# V

( )
(14)

for 0 < eV < 2DE, and by the negative of that for V < 0 (as
the sign of fL # fR changes). Similarly, for voltages of
eV > 2DE we have for the relevant states EL;k ¼ EDL # !hvFk
and ER;k ¼ EDR þ !hvFk so that EL;k # ER;k ¼ EDL # EDR

#2!hvF k ¼ eV # 2DE# 2!hvF k and dðEL;k # ER;kÞ ¼ dðeV
#2DE# 2!hvF kÞ. Therefore, the current is

I ¼ e2A

2!h

!hju2
12e#jd

mDvF

( )2

V # 2DE

e

( )
: (15)

Both Eqs. (14) and (15) apply to tunneling between like val-
leys; for unlike valleys, the term u12 is replaced by u11.

Now we turn to the resonant situation, with eV ¼ 2DE
in the doped GIG junction. As pictured in Fig. 1(c), there are
states existing over all energies that satisfy the requirement
of k-conservation. We have EL;k # ER;k ¼ EDL # EDR ¼ eV
#2DE for each pair of states, leading to dðEL;k # ER;kÞ
¼ dð0Þ in Eq. (11), which is not well defined. In the follow-
ing section we demonstrate how this current can be eval-
uated, first by performing the sums for finite-area graphene
sheets using Eq. (10) together with Eq. (9), and then taking
the limit of large area. We find an approximate (but fairly
accurate) expression for the current as

FIG. 2. (Color online) Various energy ranges I, II, and III in a doped GIG
junction that must be considered when computing the tunnel current.

FIG. 3. (Color online) (a) Band diagram for an undoped GIG junction, with
states satisfying k-conservation (i.e., in limit of large electrode area) shown
by the rings located at an energy midway between the Dirac points for the
two electrodes. (b) Qualitative I–V curve.
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I ¼ 2ð0:4Þe2Affiffiffiffiffiffi
2p
p

!h

!hje#jd

mDvF

( )2
LDE2ð2u4

11 þ u4
12Þ

e!hvF

exp # A

4p
ðeV # 2DEÞ

!hvF

* +2
( )

: (16)

This equation applies to tunneling between like valleys; for
unlike valleys, the u11 and u12 terms are interchanged.

The occurrence of L in Eq. (16) is worth examining. As
derived in the following section, the value of L is simply the
lateral extent of a graphene sheet (i.e., area of A ¼ L2). How-
ever, it is also of interest to consider the effect of structural
imperfections in the graphene. Let us say that the graphene
can be decomposed into small structurally perfect areas,
each with area a ¼ l2, and say that there are M such areas in
the entire sheet so that A ¼ Ma. The tunnel current from a
single perfect section of the film would be given by Eq. (16),
but with A ¼ a and L ¼ l. The current from the entire sheet
would then be given by M times that, yielding a result identi-
cal to Eq. (16) but with L ¼ l. Thus, we can take Eq. (16) to
apply to the general case, but with L in that equation inter-
preted as the lateral extent of perfect areas (i.e., grains) in
the graphene. We refer to this lateral extent as a structural
coherence length in the graphene. For a small, perfect gra-
phene flake, L would be the total lateral extent of the flake,
but in a larger defective sheet of graphene, L is the lateral
extent of structurally perfect grains in the sheet.

D. Finite-size effects

We consider the situation for finite-sized areas of gra-
phene, extending over #L=2 < x < L=2 and #L=2 < y <
L=2. The factor KðDkÞ introduced in Eq. (9) is easily eval-
uated to be

KðDkÞ ¼ 1

A

ðL=2

#L=2

dx

ðL=2

#L=2

dyeiDk*r

&&&&&

&&&&&

2

¼ sinc
LDkx

2

( )
sinc

LDky

2

( )&&&&

&&&&
2

; (17)

where sincðxÞ $ sinðxÞ=x. This expression for KðDkÞ is of
course peaked when kL ¼ kR. Substituting this form into
Eq. (10), and converting the sums over kL and kR to inte-
grals, permits numerical evaluation of the tunneling current
(both resonant and nonresonant). It is this method that we
use for all of the numerical results presented in the
following.

However, with the goal of obtaining analytical formulas
for the tunnel current, use of Eq. (17) for KðDkÞ is inconven-
ient as it does not permit explicit evaluation of the integrals.
To achieve this goal, we replace KðDkÞ by another function
that is also peaked when kL ¼ kR,

~KðDkÞ $ exp # 1

p
A Dkj j2

4

 !

¼ exp # 1

p
ADk2

x

4

( )
exp # 1

p

ADk2
y

4

 !

: (18)

The factor of 1=p in the exponents here is chosen such that
the area under ~KðDkÞ, when integrated over Dkx or Dky, is
identical to that under KðDkÞ. Using ~KðDkÞ rather than
KðDkÞ now allows us to explicitly evaluate the sums (inte-
grals) over kL and kR in Eq. (10). Expressing
Dkj j2¼ k2

L þ k2
R # 2kLkR cos h, where h ¼ hL # hR is the

angle between kL and kR, the angular part of the integrals is
given by

ð2p

0

dhL

ð2p

0

dhR g0ðhL; hRÞj j2 ~KðDkÞ ¼ exp # 1

p
A

4
k2

L þ k2
R

. /$ %

ð2p

0

dhL

ð2p

0

dhR g0ðhL; hRÞj j2 exp
1

p
A

2
kLkR cos h

( )
: (19)

For tunneling between like valleys, the double integral over
hL and hR on the right-hand side equals 8p2 ½ðu4

11 þ u4
12Þ

I0ðAkLkR=2pÞ6 u4
11I2ðAkLkR=2pÞ(, where In is a modified

Bessel function of the first kind of order n and the upper
(lower) sign holds for tunneling between like (unlike) bands.
For tunneling between unlike valleys the result is the same,
but with u11 and u12 interchanged. Substituting into Eq. (10)
we have

I ¼ 16pe

!h

!h2je#jd

2mD

( )2
A2

2pð Þ2
X

B

ð
kLdkL

ð
kRdkR fLðEkLÞ½

#fRðEkRÞ( exp #Aðk2
L þ k2

RÞ
4p

( )
ðu4

11 þ u4
12ÞI0

AkLkR

2p

( )*

6u4
11I2

AkLkR

2p

( )+
dðEkL # EkRÞ: (20)

Let us initially consider the resonant case, so that region II of
the band alignment has zero size. The current from regions I
and III are equal so that we need only evaluate one of them,
and we use the CBs. The band structures are aligned, so that
dðEkL # EkRÞ ¼ dð!hvFkL # !hvFkRÞ ¼ dðkL # kRÞ=!hvF and the
current reduces to (including a factor of 2 to account for both
regions I and III)

I ¼ 32pe

!h

!h2je#jd

2mD

( )2
A2

2pð Þ2!hvF

ð
k2dk fLðEL;kÞ # fRðER;kÞ

" #

/ exp #Ak2

2p

( )
ðu4

11 þ u4
12ÞI0

Ak2

2p

( )
þ u4

11I2
Ak2

2p

( )* +
:

(21)

For zero temperature the integrals involving the Bessel func-
tions can be explicitly evaluated. Introducing the integration
variable x ¼ Ak2=2p, we note that

ðxmax

0

ffiffiffi
x
p

dxe#xI0ðxÞ ¼
2

3
x3=2

max2F2
1

2
;
3

2

$ %
; 1;

3

2

$ %
;#2xmax

( )

(22)

and
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ðxmax

0

ffiffiffi
x
p

dxe#xI2ðxÞ¼
1

28
x7=2

max2F2
5

2
;
7

2

$ %
;

9

2
;5

$ %
;#2xmax

( )
;

(23)

with xmax ¼ Ak2
max=2p ¼ AðDE=!hvFÞ2=2p and where 2F2 is a

generalized hypergeometric function. By numerical inspec-
tion, we find that the quantities on the right-hand side of the
equals sign for both Eqs. (22) and (23) approach, for large
xmax, (0.399…)xmax, which we express simply as 0.4xmax.
We thus obtain a formula for the peak resonant current
(V ¼ 2DE=eÞ at zero temperature of

I ¼ 32pe

!h

!h2je#jd

2mD

( )2
A

2pð Þ2

ffiffiffi
p
2

r
LDE2

ð!hvFÞ3
0:4ð2u4

11 þ u4
12Þ:

(24)

This expression applies to tunneling between like valleys;
for unlike valleys, u11 and u12 are interchanged. In the fol-
lowing section we compare this result to the numerical eval-
uation of the current from Eqs. (10) and (17), and we find
that they agree fairly well.

Finally, for the current away from the resonant peak, we
return to Eq. (20) and evaluate it in the various energy
regions of band alignment shown in Fig. 2. In region I we
have kR ¼ kL þ eV0=!hvF with eV0 $ eV # 2DE. In the inte-
grand of Eq. (20) there is the term exp½#Aðk2

L þ k2
RÞ=4p(,

which, with kR ¼ kL þ eV0=!hvF, will be sharply peaked at
k2

L ¼ k2
R ¼ ðeV0=2!hvFÞ2. For these kL and kR values the argu-

ment of the I0 Bessel function will be > 1 for
V0 > ð3VnmÞ=L, which corresponds to 0.03 V for
L¼ 100 nm or 0.003 V for L¼ 1000 nm. For these cases we
can replace the Bessel function by its asymptotic limit,
expðAkLkR=2pÞ=

ffiffiffiffiffiffiffiffiffiffiffiffi
AkLkR
p

. Combining with the
exp½#Aðk2

L þ k2
RÞ=4p( term, and expressing the exponent as

k2
L þ k2

R # 2kLkR ¼ ðkL # kRÞ2 ¼ ðeV0=!hvFÞ2, we are left
with a term exp½#AðeV0=!hvFÞ2=4p(, which gives the depend-
ence of the current on V0. The same term arises when we
consider the energy region III, and similar arguments can be
made for the I2 Bessel function (albeit for larger V0). In both
these regions the tunneling occurs between like bands, so the
term 2u4

11 þ u4
12 in Eq. (24) is appropriate. Therefore, to pro-

vide an approximate analytic expression for the entire
(broadened) resonant peak of the current, we simply take the
peak value from Eq. (24) and multiply that by

exp½#AðeV0=!hvFÞ2=4p(. The final expression is then listed
previously in Eq. (16). As shown in the following section,
this approximate expression for the current actually provides
quite good results even for V0 values that are nearer to zero
than by the bounds just stated. For the off-resonance contri-
bution from region II we maintain our usage of Eqs. (14) and
(15), with the term u4

12 ¼ ðu4
11 þ u4

12Þ # u4
11 being appropriate

for the unlike bands. It should, however, be noted that close
to 0 V, Eq. (14) does not properly describe the linear
current–voltage relationship that occurs for the finite elec-
trode area, as illustrated in the following section.

E. Charging of the graphene electrodes

In the derivations of the previous sections we treated DE
(the separation of the Fermi level and Dirac point) as if it were
a fixed quantity. However, for any physical GIG junction DE
will actually vary with the voltage V between the electrodes
due to charging of the graphene electrodes. To illustrate this
effect, we consider initially the situation for nominally
undoped electrodes as pictured in Fig. 4. If the electrodes were
metallic, then a surface charge would form on each electrode
in response to the electric field across the junction. For the
case of graphene electrodes, this “surface charge” becomes a
2D charge within each electrode. The GIG junction has associ-
ated with it a geometric capacitance per unit area,
C ¼ eR e0=d, where eR is the relative dielectric constant and d
is the thickness of the insulating layer.11 For a voltage across
the insulator of Vi, the charge density in the electrodes is given
by

r ¼ CVi ¼ eðnL # pLÞ ¼ eðpR # nRÞ; (25)

where n and p are the 2D carrier densities in the respective
electrodes. Here, Vi is the same as V0 defined previously; we
use this new symbol to signify that it is the voltage across
the insulator with the graphene electrode quantum capaci-
tance considered.11 The applied voltage V between the elec-
trodes is given by eV ¼ lL # lR.18 Thus, referring to Fig. 4,
we have

eV ¼ eVi þ ðlL # EDLÞ þ ðEDR # lRÞ; (26)

where for the undoped electrodes ðlL # EDLÞ ¼ ðEDR # lRÞ
$ DE. A general expression for the carrier densities is

n# p ¼ 2

pð!hvFÞ2

ð1

ED

ðE# EDÞdE

1þ exp½ðE# lÞ=kBT(
#
ðED

#1

ðE# EDÞdE

1þ exp½ðl# EÞ=kBT(

$ %

¼ 2

pð!hvFÞ2

ð1

0

EdE

1þ exp½ðE# DEÞ=kBT(
#
ð0

#1

EdE

1þ exp½ðDE# EÞ=kBT(

$ %
;

(27)

which depends only on DE ¼ l# ED. Thus, substituting the
expression for Vi from Eq. (25) into Eq. (26), we are left
with a single equation for DE that can easily be solved
numerically.

Moving to the case of doped electrodes, Eq. (25)
becomes generalized to read

r ¼ CVi ¼ e½ðnL # pLÞ # ND( ¼ e½ðpR # nRÞ # NA(; (28)
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where 2D substitutional doping concentrations of ND

(n-type) in the left-hand electrode and NA (p-type) in the
right-hand electrode are assumed. We consider equal con-
centrations in both electrodes, ND ¼ NA ¼ N, so that
ðnL # pLÞ ¼ ðpR # nRÞ and ðlL # EDLÞ ¼ ðEDR # lRÞ $ DE.
Equation (26) still applies, and substituting Eq. (28) into that
we arrive at the following single equation:

eV ¼ e2

C
½ðnL # pLÞ # N( þ 2DE; (29)

where ðnL # pLÞ is given by Eq. (27). Given V, C, and N, this
equation can be solved numerically for DE. For zero temper-
ature this solution is easily expressed, with
ðnL # pLÞ ¼ 6DE2=½pð!hvFÞ2( where the upper sign is used
for nL > pL (DE > 0) and the lower sign for nL < pL

(DE < 0). Equation (29) then forms a quadratic equation for
DE, with the solution

DE ¼6
1

2

#2Cpð!hvFÞ2

e2

(

þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2Cpð!hvFÞ2

e2

" #2

64pð!hvFÞ2 N þ CV

e

( )
vuut

9
=

;: (30)

This solution is valid for all values of V, with DE > 0 for
V > #eN=C (upper sign), DE ¼ 0 for V ¼ #eN=C, and
DE < 0 for V < #eN=C (lower sign).

Using the value of DE deduced from the above-
mentioned procedure, the tunneling current in the GIG junc-
tion can be computed using the formulas of the previous
sections.19 As an example of the influence of the electrode
charging, we consider the variation in DE as a function of V
for two situations: one for a thin insulating layer, taking
eR ¼ 4 and d ¼ 0:5 nm, which gives a capacitance of
C ¼ 7:1 lF=cm2, and another for a relatively thick insulator
with ten times smaller capacitance. Figure 5 shows the
resulting DE values, assuming a doping concentration of

0:74/ 1012 cm#2 corresponding to a value of DE ¼ 0:1 eV
for C ¼ 0. As can be seen from the plot, the variation in DE
for the thick insulator is not particularly large, and as will be
seen in the following section it produces only a modest
broadening of the resonant peak in the current. For the thin
insulator the variation of DE is much greater, leading to a
substantial broadening of the resonant peak in the tunnel
current.

III. RESULTS

This section considers numerical results for the single-
particle tunnel current in doped GIG junctions, assuming
initially a fixed value of DE for the electrodes (i.e., zero ca-
pacitance of the junction). Figure 6 shows results for
DE ¼ 0:1eV, as given by Eq. (10) for the exact (numerical)
solution, at temperatures of T¼ 0 and 300 K. Also shown are
the predictions of our approximate (analytic) formulas for
the current, at 0 K, as given by the sum of Eq. (16) with Eq.
(14) or (15). These formulas provide a reasonably good
description of the current, although they do not capture the
asymmetry of the resonance peak (this asymmetry arises
from regions I and III of the band alignment, Fig. 2, the cur-
rent from which has different magnitudes for V > 2DE=e or
V < 2DE=e). There is little temperature dependence in the
width of the resonant peak, as already noted in prior
works,2,3 although the height of the peak increases somewhat
with temperature as greater numbers of states are accessed at
the higher T (temperature dependence of the I–V curve is
also apparent close to 0 V, with the slope of the I–V curve
there being affected both by T and L). As discussed in Sec.
II B, the height of the resonant peak is proportional to the
structural coherence length L, with the width being propor-
tional to 1=L. The nonlinearity of the I–V curve is large in
Fig. 6, and for larger coherence lengths (and/or larger DE) it
becomes larger still.

FIG. 5. (Color online) Dependence of DE (the separation of the Fermi level
and the Dirac point) on the capacitance of the junction C and the applied
voltage V between the graphene electrodes, for a doping concentration cor-
responding to DE ¼ 0:1 eV at zero capacitance.

FIG. 4. (Color online) Band diagram for GIG junction with undoped elec-
trodes, including consideration of the capacitance of the insulator layer.
Charging of the electrodes results, so that the voltage drop across the insula-
tor Vi is different than the applied voltage V between the electrodes.
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The results in Fig. 6 are applicable to graphene electro-
des that have perfectly aligned crystal orientations. For the
case of rotational misalignment between the electrodes, we
still evaluate the current using Eq. (10), but we now include
the expðiQ * rÞ term in the definition of ~KðDkÞ [i.e. as in the
integral of Eq. (7)]. Results of that type of computation are
shown in Fig. 7. As the misalignment angle increases, the in-
tensity of the resonant peak at V ¼ 2DE=e rapidly decreases;
the peak shifts to higher voltages and a related peak appears

at lower (negative voltages). For the situation of L ¼ 100nm
being considered, it is apparent from Fig. 7 that only the gra-
phene grains in the opposing electrodes that are misoriented
by less than about 60.150 will contribute significantly to the
resonant peak. Compared to a total angular range from #300

to þ300 (beyond which a resonance between the next-
nearest valleys, i.e., K and K0, must be considered), it is
apparent that only 0.5% of the area of each electrode contrib-
utes to the resonant peak (i.e. for randomly oriented grains in
the electrodes). The other, surrounding graphene grains do
nevertheless play an important role of laterally transporting
the current. For the larger grain size of L ¼ 1000 nm, only
areas of the opposing electrodes that are misoriented by less
than about 60.0150 contribute significantly to the resonant
peak, corresponding to 0.05% of the electrode areas.

For the I–V characteristics of misaligned electrodes
(x > 0:150) displayed in Fig. 7, it is apparent that they also
have peak currents, but ones that are smaller and at a differ-
ent voltages than for the aligned case (x ¼ 00). These peaks
for the misaligned situation arise due to a locus of points in
k-space where both the wavevectors and the energies of
states in the two electrodes are matched, as illustrated in
Fig. 8 for V0 > 0 where V0 $ V # 2DE=e. By inspection, it
can be seen that the voltages at which these peaks occur are
given by V0 ¼ 6!hvFQ=e. The peak currents for the mis-
aligned case become smaller, relative to the peak aligned
current, as the structural coherence length L increases. How-
ever, the range of x that contributes to the peak current for
aligned electrodes also falls with L. The net result is that the
peak-to-valley ratio of the angle-averaged current increases
sublinearly with L, being 1.9 for the L¼ 100 nm case of
Fig. 7, and 3.7 for L¼ 1000 nm. Of course, as L increases the
total electrode area required such that well-aligned portions

FIG. 7. (Color online) Current vs voltage in a doped GIG junction with rota-
tionally misaligned electrodes. Individual curves with misalignment angles
x spaced by 0.150 are shown, with the angular average shown by the thick
curve. Results are for an exact computation at 0 K, with other parameters
being the same as in Fig. 6.

FIG. 8. (Color online) Schematic energy vs wavevector band structures,
illustrating the source of the main component of the tunnel current for rota-
tionally misaligned electrodes. The bands of the right-hand electrode are
shifted by a wavevector Q (assumed to be in the x-direction) compared to
those of the left-hand electrode. The points indicated by solid dots on the
respective band structures have matching wavevector and energy, hence
making a relatively large contribution to the current.

FIG. 6. (Color online) Current vs voltage in a doped GIG junction, for an
energy difference DE between the Fermi-level and the Dirac point in each
electrode of 0.1 eV (zero capacitance of junction), and for a structural coher-
ence length of L ¼ 100nm. Values of u11 ¼ 1 and u12 ¼ 1 are assumed, and
the graphene lattices in the two electrodes are rotationally aligned.

043711-8 Feenstra, Jena, and Gu J. Appl. Phys. 111, 043711 (2012)

Downloaded 23 Feb 2012 to 129.74.112.200. Redistribution subject to AIP license or copyright; see http://jap.aip.org/about/rights_and_permissions



of the opposing electrodes will occur also increases, being
+L3/(1 nm) with the assumption of randomly oriented grains
in one or both electrodes.

Considering now the effect of the nonzero capacitance
of the GIG junction, Fig. 9 displays the resonant peak at zero
temperature for the values of capacitance already defined in
regard to Fig. 5. The C ¼ 0 case pictured there is the same as
for Fig. 6 (exact computation). The situation with a relatively
thick barrier, having C ¼ 0:71 lF=cm2, differs only slightly
from the C ¼ 0 case. However, for the thin barrier with
C ¼ 7:1 lF=cm2, the resonant peak is now substantially
broadened and also shifted to higher voltages. Nevertheless,
a large nonlinearity in the I–V characteristic remains, and
qualitatively the behavior is the same as for the cases with
lower capacitance. Approximate solutions for the tunnel cur-
rent are given by Eqs. (14)–(16) together with Eq. (30) are
not shown in Fig. 9, but they do follow the exact curves quite
closely for all values of C.

IV. DISCUSSION

The nonlinear I–V curves predicted in this work for GIG
junctions occur only when the graphene electrodes have
differing chemical potentials, arising from different doping
concentrations (i.e., in the same manner as for prior work on
2D–2D tunneling).2,3 Doping of graphene can be accom-
plished by a variety of means,20–23 and chemical potentials
shifted by 0.1 eV or more from the Dirac point, both n-type
and p-type, are not uncommon. In this respect the simula-
tions presented here appear to be applicable to physically
realizable situations.

It is apparent by comparing Figs. 6 and 7 that a much
greater nonlinearity of the I–V curve for a doped GIG junc-
tion occurs when the electrodes are perfectly rotationally
aligned (or with a misalignment angle of 600). This rota-

tional alignment imposes a significant constraint on the devi-
ces (one that is not present for the BiSFET devices, as
discussed in Sec. I).9 The manner in which a rotationally
aligned GIG junction will be achieved is not clear at present,
as it seems to be incompatible with the exfoliation and trans-
fer type of techniques commonly used in handling graphene
flakes.24 A method more consistent with the requirement of
rotational alignment would be direct epitaxy of the graphene
electrodes and the insulator. Recent works with BN (an insu-
lator with bandgap of 6.0 eV),25 which can be grown epitax-
ially,26 provide key steps in this direction, but much work on
the epitaxy of 2D materials remains to be done.

Even in the absence of perfect rotational alignment of the
electrodes, a moderate degree of nonlinearity of the I–V curve
(peak-to-valley ratio & 2) can still be achieved so long as one
or both electrodes consist of small, randomly oriented gra-
phene domains with domain size & 100 nm. The resonant
portion of the current will flow through the small portions of
the opposing electrodes that are rotationally aligned, with the
remainder of the electrodes serving to connect these “hot
spots” and also contributing their own background (nonreso-
nant) current. Graphene grown epitaxially on metal substrates
consists typically of micrometer-size constant-thickness
domains,27–29 with grain size> 50 nm and considerable rota-
tional disorder of the grains,27 although further quantitative
evaluation of that is needed. Graphene grown in vacuum on
the C-face of SiC{0001} has +50 nm size domains also with
considerable rotational disorder, although this disorder only
extends over 110% of the total possible range of rotational
angles (judging from the width of the diffraction streaks that
extend over +30 of a 300 sector).30,31

To fully exploit the nonlinear I–V curve found for the
doped GIG tunnel junction, it is desirable to fashion it into
some sort of three-terminal device. This can be accom-
plished simply by putting the GIG junction between two
additional gate electrodes, in a geometry identical to that
used in the BiSFET9 (or, with chemical doping of the GIG
electrodes as described previously, then just a single gate
electrode above or below the GIG junction would likely suf-
fice). With the voltage bias in the GIG junction set to the res-
onance, then a voltage difference across the gate electrode(s)
will swing the current off resonance and thus achieve ampli-
fication of the signal to the gate.

Further comparing the BiSFET operation with the
single-particle tunneling effects considered here, we note
that the BiSFET, in addition to having a critical temperature
below which it must be operated, also relies upon a critical
current for its nonlinear response.9 This critical current
would presumably require rather tight tolerances on the insu-
lating layer separating the electrodes in order to achieve
good device-to-device reproducibility in the operating volt-
age. The single-particle tunneling does not have that sort of
requirement; the tunnel currents will of course scale with the
thickness and barrier height of the tunneling layer, but the
operating voltage is only weakly dependent on that, being
determined primarily by the relative doping of the two GIG
electrodes for low capacitance of the junction and varying
slightly (Fig. 9) for high values of the capacitance. It is
important to also note that the BiSFET-type mechanism is

FIG. 9. (Color online) Current vs voltage in a doped GIG junction, for an
exact computation at zero temperature with rotationally aligned electrodes
and using a doping concentration that corresponds to DE ¼ 0:1eV at zero
capacitance. Various values of the capacitance are considered, with the DE
values at each voltage computed as shown in Fig. 5.
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relevant to thin tunneling barriers (e.g., single atomic layer),
whereas the single-particle effects computed here apply to
weak tunneling, i.e., relatively thick barriers.

V. SUMMARY

In summary, we have computed the single-particle tun-
neling characteristic for a graphene-insulator-graphene junc-
tion with complementary doping in the graphene electrodes.
A highly nonlinear I–V characteristic is found, with a reso-
nant peak whose width is independent of temperature. The
dependence of the tunneling current on both the lateral gra-
phene size of the graphene and the relative rotational orienta-
tion of the electrodes is considered. The greatest amount of
nonlinearity in the I–V characteristic is achieved with nearly
perfect rotational orientation of electrodes, which presents a
significant challenge in fabrication of such devices. A three-
terminal device can be fashioned using additional gate elec-
trode(s) above and/or below the GIG junction, in the same
geometry as for the recently proposed BiSFET device.9

ACKNOWLEDGMENTS

This work was supported by the National Science Foun-
dation, Grant Nos. DMR-0856240 and ECCS-0802125, and
the SRC NRI MIND project.

1T. Ando, A. B. Fowler, and F. Stern, Rev. Mod. Phys. 54, 437 (1982).
2J. P. Eisenstein, L. N. Pfeiffer, and K. W. West, Appl. Phys. Lett. 58, 1497
(1991).

3J. P. Eisenstein, T. J. Gramila, L. N. Pfeiffer, and K. W. West, Phys. Rev.
B 44, 6511 (1991).

4K. M. Brown, E. H. Linfield, D. A. Ritchie, G. A. C. Jones, M. P. Grin-
shaw, and M. Pepper, Appl. Phys. Lett. 64, 1827 (1994).

5T. Kawamura, H. A. Fertig, and J. P. Leburton, Phys. Rev. B 49, 5105
(1994).

6E. Tutuc, S. Melinte, E. P. De Poortere, R. Pillarisetty, and M. Shayegan,
Phys. Rev. Lett. 91, 076802 (2003).

7J. P. Eisenstein, Science 305, 950 (2004).
8J. P. Eisenstein and A. H. MacDonald, Nature (London) 432, 691 (2004).
9S. K. Banerjee, L. F. Register, E. Tutuc, D. Reddy, and A. H. MacDonald,
IEEE Electron Device Lett. 30, 158 (2009).

10D. Basu, L. F. Register, D. Reddy, A. H. MacDonald, and S. K. Banerjee,
Phys. Rev. B 82, 075409 (2010).

11S. Luryi, Appl. Phys. Lett. 52, 501 (1988).
12J. Bardeen, Phys. Rev. Lett. 6, 57 (1961).
13J. Tersoff and D. R. Hamann, Phys. Rev. B 31, 805 (1985).
14The j term in tunneling has a typical form of ½ð2m/=!h2Þ þ k2

jj(
1=2, where /

is a barrier height and kjj is the parallel momentum. For graphene, the lat-
ter is essentially equal to the momentum at the K or K’ point (i.e., 4p=3a).

15R. M. Feenstra, J. A. Stroscio, and A. P. Fein, Surf. Sci. 181, 295
(1987).

16N. H. Shon and T. Ando, J. Phys. Soc. Jpn. 67, 2421 (1998); Y. Zheng and
T. Ando, Phys. Rev. B 65, 245420 (2002).

17Actually, the situation of zero doping is unphysical for all voltages except
V ¼ 0, due to the charging effects in the graphene electrodes described in
Sec. II E. Nevertheless, it is perfectly fine to consider the zero doping case
in the limit of zero geometrical capacitance for the purpose of introducing
the computation method for the tunnel current, recognizing that for any re-
alistic computation the doping will be nonzero.

18The voltage V is applied to some location in each electrode that is removed
from the vicinity of the junction. Within each graphene electrode, the
charge density and electrostatic potential both vary as a function of posi-
tion from those contact points to the junction itself.

19The formulas of Secs. II A–II D are applicable for the case DE > 0. If
DE < 0 is found from Eq. (30), then this situation can be handled using
the formulas of Secs. II A–II D simply by interchanging the roles of the
two electrodes (so that DE and V both change signs).

20I. Gierz, C. Riedl, U. Starke, C. R. Ast, and K. Kern, Nano Lett. 8, 4603
(2008).

21K. Brenner and R. Murali, Appl. Phys. Lett. 96, 063104 (2010).
22C. Coletti, C. Riedl, D. S. Lee, B. Krauss, L. Patthey, K. von Klitzing, J.

H. Smet, and U. Starke, Phys. Rev. B 81, 235401 (2010).
23S. Lara-Avila, K. Moth-Poulsen, R. Yakimova, T. Bjørnholm, V. Fal’ko,

A. Tzalenchuk, and S. Kubatkin, Adv. Mater. 23, 878 (2011).
24K. S. Novoselov, A. K. Geim, S. V. Morozov, D. Jiang, Y. Zhang, S. V.

Dubonos, I. V. Grigorieva, and A. A. Firsov, Science 306, 666 (2004).
25C. R. Dean, A. F. Young, I. Meric, C. Lee, L. Wang, S. Sorgenfrei, K.

Watanabe, T. Taniguchi, P. Kim, K. L. Shepard, and J. Home, Nature
Nanotech. 5, 722 (2010).

26A. Nagashima, N. Tejima, Y. Gamou, T. Kawai, and C. Oshima, Phys.
Rev. B 51, 4606 (1995).

27A. Reina, X. Jia, J. Ho, D. Nezich, H. Son, V. Bulovic, M. S. Dresselhaus,
and J. Kong, Nano Lett. 9, 30 (2009).

28K. S. Kim, Y. Zhao, H. Jang, S. Y. Lee, J. M. Kim, K. S. Kim, J.-H. Ahn,
P. Kim, J.-Y. Choi, and B. H. Hong, Nature (London) 457, 706 (2009).

29X. Li, W. Cai, J. An, S. Kim, J. Nah, D. Yang, R. Piner, A. Velamakanni,
I. Jung, E. Tutuc, S. K. Banerjee, L. Colombo, and R. S. Ruoff, Science
324, 1312 (2009).

30J. Hass, J. E. Millán-Otoya, P. N. First, and E. H. Conrad, Phys. Rev. B 78,
205424 (2008).

31F. Varchon, P. Mallet, L. Magaud, and J.-Y. Veuillen, Phys. Rev. B 77,
165415 (2008).

043711-10 Feenstra, Jena, and Gu J. Appl. Phys. 111, 043711 (2012)

Downloaded 23 Feb 2012 to 129.74.112.200. Redistribution subject to AIP license or copyright; see http://jap.aip.org/about/rights_and_permissions

http://dx.doi.org/10.1103/RevModPhys.54.437
http://dx.doi.org/10.1063/1.105157
http://dx.doi.org/10.1103/PhysRevB.44.6511
http://dx.doi.org/10.1103/PhysRevB.44.6511
http://dx.doi.org/10.1063/1.111768
http://dx.doi.org/10.1103/PhysRevB.49.5105
http://dx.doi.org/10.1103/PhysRevLett.91.076802
http://dx.doi.org/10.1126/science.1099386
http://dx.doi.org/10.1038/nature03081
http://dx.doi.org/10.1109/LED.2008.2009362
http://dx.doi.org/10.1103/PhysRevB.82.075409
http://dx.doi.org/10.1063/1.99649
http://dx.doi.org/10.1103/PhysRevLett.6.57
http://dx.doi.org/10.1103/PhysRevB.31.805
http://dx.doi.org/10.1016/0039-6028(87)90170-1
http://dx.doi.org/10.1143/JPSJ.67.2421
http://dx.doi.org/10.1103/PhysRevB.65.245420
http://dx.doi.org/10.1021/nl802996s
http://dx.doi.org/10.1063/1.3308482
http://dx.doi.org/10.1103/PhysRevB.81.235401
http://dx.doi.org/10.1002/adma.v23.7
http://dx.doi.org/10.1126/science.1102896
http://dx.doi.org/10.1038/nnano.2010.172
http://dx.doi.org/10.1038/nnano.2010.172
http://dx.doi.org/10.1103/PhysRevB.51.4606
http://dx.doi.org/10.1103/PhysRevB.51.4606
http://dx.doi.org/10.1021/nl801827v
http://dx.doi.org/10.1038/nature07719
http://dx.doi.org/10.1126/science.1171245
http://dx.doi.org/10.1103/PhysRevB.78.205424
http://dx.doi.org/10.1103/PhysRevB.77.165415

