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We have investigated the effect of trimethyl aluminum
(TMA) and water (H,O) half-cycle treatments on HF-treated,
and O;-oxidized GaN surfaces at 300 °C. The in-situ X-ray
photoelectron spectroscopy results indicate no significant re-
growth of Ga—O-N or self-cleaning on HF-treated and Os-

1 Introduction GaN (Group-IIT nitride) technology
has been widely used in optoelectronics, radio frequency
(RF) transistors, and power switching due to a suitable
band gap, excellent transport properties, high breakdown
field, low power losses, as well as the possibility of form-
ing a heterojunction structure on low cost, large area sub-
strate templates such as Si, sapphire, etc. [1, 2]. The intro-
duction of a high-quality, ultrathin, atomic layer deposited
(ALD) dielectric between the metal and semiconductor has
been shown to effectively decrease diode leakage current
without compromising Metal Oxide Semiconductor-High
Electron Mobility Transistor (MOS-HEMT) transfer char-
acteristics [3—5]. The evaluation of the role of native ox-
ides as well as ALD dielectric films along with their inter-
action with the underlying substrate could provide valuable
information for device applications [6]. Therefore, in this
work, we have investigated the growth of ALD Al,O; on
top of HF-treated and Os-oxidized, n-type GaN.

2 Methods Metalorganic chemical vapor deposition
(MOCVD) grown n-GaN on sapphire was used as the sub-
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oxidized GaN substrates with exposure to water and TMA.
This result is different from the self-cleaning effect of Ga,O3
seen on sulfur-treated GaAs or InGaAs substrates. O3 causes
aggressive oxidation of GaN substrate and direct O-N bond-
ing compared to H,O.
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strate. The surfaces were pre-cleaned using a solvent de-
greasing step (acetone/iso-propanol/H,O for 2 min each),
wet chemical cleaning (2% HF for 2 min followed by
2 min H,O rinse) and blown dry with N, [7, 8]. Immedi-
ately after surface preparation, the samples were loaded in
an ultra high vacuum (UHV) custom tool with an inte-
grated monochromatic Al K, XPS (kv = 1486.7 ¢V) and an
SUNALE® ALD reactor as described in detail elsewhere
[8—11]. TMA from SAFC Hi-tech® was used as the metal
precursor. H,O (de-ionized water with a resistivity of
~18 MQ) vapor was used as the oxidant. O; with a concen-
tration of 380 g/m’ was used for GaN substrate oxidation
at 400 °C, for 30 minutes inside the ALD reactor. The
temperature of the ALD reactor was maintained at 300 °C
during ALD. Ultrahigh purity nitrogen (N, 99.999%) was
used as the purge gas. The TMA- and H,O-injection pulse
times were both Is, respectively. In-situ XPS was ob-
tained after each TMA or H,O half-cycle reaction on the
HF-treated and Os-oxidized GaN. The XPS data was
charge referenced to the N 1s (397.9 e¢V) core level from
the GaN substrate [12].
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3 Results and discussion Both as-received and HF-
treated GaN substrates showed carbon and oxygen on the
surface, and the presence O—C bonding (such as C—O-H,
C—O-R at ~286 ¢V, and C—O-O-R, —CO; at ~288 V).
As expected, the concentrations of surface C and O are
lowered after the HF-treatment, however, complete re-
moval was not possible (not shown here). After HF treat-
ment, the atomic% of C decreased from 18.6% to 4.0% and
atomic% of O decreased from 14.6% to 6.8%. O; oxidation
of HF-cleaned GaN caused a ~5x increase in O 1s peak
area indicating O incorporation in the GaN substrate. C
was close to the XPS detection limit. The corresponding
cross-sectional high resolution transmission electron mi-
croscopy images of HF-cleaned and O; treated GaN are
shown in Fig. 1. An approximately 1.5-2 nm thick lighter
contrast layer was seen for the O;-oxidized GaN substrate
indicative of GaO(N) growth at the GaN surface.

Figure 1c¢ shows the normalized Ga 2ps, XPS for HF-
treated and Os-oxidized GaN substrates. The area under the
Ga 2ps); peak for HF-treated GaN is shaded for comparison
with the Os-oxidized GaN. An increase in the FWHM (full
width at half maximum) by ~0.4 eV relative to the HF
etched sample is seen after O;-oxidation. This increase in
peak width is clearly indicative of an increase in GaO(N)
bonding at a higher binding energy (~0.4 eV) in addition
and relative to the GaN substrate bonding (~1118.3 eV)
upon O;-oxidation [13, 14]. Although the low oxida-
tion temperature of 400 °C should not substantially
oxidize GaN [13, 14], the presence of O; as the oxidant is
expected to cause aggressive oxidation of GaN. The ag-
gressive oxidation by O; was previously shown by Bren-
nan et al. where O3 caused formation of thicker Ga-oxides
on InGaAs even after the Ist O; half-cycle during AID
Al,O; growth [15]. Figure 1(inset) shows the O 1s raw data
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Figure 1 (online colour at: www.pss-rapid.com) TEM images of
(a) HF-cleaned and (b) Os-treated GaN are shown. Part (c¢) shows
the Ga 2p;,, XPS of HF-treated and O;-oxidized GaN. The inset
figure shows the Ols data for the corresponding samples.
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Figure 2 (online colour at: www.pss-rapid.com) (a) Ga 2p;;, in
situ XPS on HF-treated GaN including HF-treatment, ALD bake,
and TMA/DIW half-cycle study for up to 30 ALD cycles. (b) Ga
2ps, in situ XPS on O3-oxidized GaN before and after TMA/DIW
half-cycle treatments. The O 1s data is shown as insets both for
HF-treated GaN (Fig. 2a, inset) and Os-oxidized GaN (Fig. 2b,
inset).

for the corresponding samples. For HF-treated GaN, two
distinct bonds are seen: O-H (~533.35¢V) [10, 11] and
possibly Ga—O-N (~531.85 eV), whereas a near symmetric
peak at ~531.5 eV indicating a predominantly single bond-
ing environment is seen for Os-oxidized GaN.

Figure 2a shows the normalized Ga 2ps, in-situ XPS
data for TMA/H,O half-cycle study on HF-treated GaN.
The Ga 2p;,, after HF-treatment, vacuum anneal for 10 mi-
nutes at 300 °C (ALD bake), 1st TMA, 1st H,O, 15th
TMA, 15th H,0, and 30th H,O half-cycle reactions are
shown. There is no noticeable peak broadening after the
TMA/H,0 half-cycle studies up to the 30th H,O half-cycle
reaction. This is indicative of no substantial growth of
Ga-O-X on HF-treated GaN surface during the ALD
AlLO; growth at 300 °C and highlights the extreme oxida-
tion resistance of GaN. Figure 2b shows the normalized
Ga 2p;5, in-situ XPS data for TMA/H,O half-cycle treat-
ments on O;-oxidized GaN. The Ga 2p;, peak remains
nearly identical in FWHM after the subsequent 1st TMA
and Ist H,O half-cycles on Os-oxidized GaN. The corre-
sponding O 1s data is shown as insets both for HF-treated
GaN (Fig. 2a, inset) and O;-oxidized GaN (Fig. 2b, inset).
For HF-treated GaN, the ALD growth causes an increase
in O 1s peak area as a function of the ALD cycle. In the
case of O;-oxidized GaN, the O 1s data indicates no sig-
nificant change in the peak area after the 1st TMA and 1st
H,O0 half-cycles. These Ga 2ps; in-situ XPS results imply
that the TMA/H,O half-cycle reactions on HF-treated and
0;-oxidized GaN do not cause either substantial growth or
self-cleaning of GaO(N) components. This result is in con-
trast to the self-cleaning of Ga,O; on sulfur-treated GaAs
and InGaAs substrates at similar deposition temperatures
[9, 10, 15, 16].

Figure 3 shows the N 1s and Al 2p data for HF-treated
and O;-oxidized GaN substrates. The N 1s XPS region
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Figure 3 (online colour at: www.pss-rapid.com) (a) N 1s XPS of
HF-treated and Os-oxidized GaN are shown. (b) Al 2p in situ
XPS is shown.

overlaps with Ga(LMM) Auger lines at the lower binding
energy range of 390-395 eV. The N 1s peak corresponding
to N—-Ga substrate peak appears at ~397.9 eV and N-O
bonding appears at ~402—407 eV [12]. For HF-treated
GaN in Fig. 3, the N 1s XPS is shown prior to ALD and
after the 30th H,O ALD half-cycle. There is N—Ga bond-
ing along with Ga Auger lines. However, there is no clear
N-O peak in either case. This result was also true for the
initial ALD cycles starting from HF-treated GaN surface.
For O3-oxidized GaN, there is an N-O peak at ~403 eV in
addition to the N—Ga substrate peak. This result shows that
nitrogen is directly bonded to oxygen (N-O) when Oj is
used for substrate oxidation, whereas no such bonding is
seen when H,O is used as the oxidant. After the 1st
TMA/H,0 half-cycle treatment, the N-O bonding is still
seen showing no significant self-cleaning of the N-O com-
ponent during Al,O; deposition.

The Al 2p photoelectron lines for HF-treated GaN
(baseline), HF-treated GaN with a subsequent single cycle
of TMA, and Oj;-treated GaN also with a subsequent single
cycle of TMA were studied (Fig. 3b). There is no Al de-
tected for the baseline substrate. When HF-treated GaN is
exposed to the 1st TMA pulse, a very low intensity of
Al 2p is seen, close to the detection limits of XPS. How-
ever in the case of Os-oxidized GaN, a much higher inten-
sity Al 2p peak is seen. It is evident that the O;-oxidized
GaN surface provides better nucleation sites for ALD
Al,O3 compared to HF-treated GaN. Therefore, the incuba-
tion time for ALD Al,O3 growth on Os-oxidized GaN is
expected to be shorter. The nucleation of the Al,O; dielec-
tric would depend on the number of reactive sites (—OH
groups) available for the ligand exchange mechanism with
TMA [17]. Further studies of the ligand exchange mecha-
nisms are needed to understand the facile Al,O; nucleation
on oxidized GaN surfaces.

4 Summary We have investigated TMA/H,0 half-
cycle treatments on HF-treated and O;-oxidized GaN sur-
faces at 300 °C. The in-situ XPS results indicate no signifi-
cant self-cleaning effect or growth of Ga—O—N on the GaN

© 2011 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim

substrate during ALD. O; exposure causes aggressive oxi-
dation of the GaN substrate and direct N-O bonding com-
pared to H,O exposure. The incubation time for AL,O;
growth on oxidized GaN is shorter compared to that on
HF-treated GaN.
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