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Interband quantum tunneling of electrons in semiconductors is of intense recent interest as the
underlying transport mechanism in tunneling field-effect transistors. Such transistors can
potentially perform electronic switching with lower energy than their conventional counterparts.
The recent emergence of two-dimensional (2D) semiconducting crystals provides an attractive
material platform for realizing such devices. In this work, we derive an analytical expression for
understanding tunneling current flow in single-layer 2D crystal semiconductors in the k-space. We
apply the results to a range of 2D crystal semiconductors, and compare it with tunneling currents in
three-dimensional semiconductors. We also discuss the implications for tunneling devices. VC 2013
American Institute of Physics. [http://dx.doi.org/10.1063/1.4799498]

Two-dimensional (2D) crystals of graphene were first
isolated in 2004.1 The unique electronic and optical proper-
ties of graphene have been extensively studied since then.2

Electronic transistors have been proposed with graphene for
ultra-low power switching.3–5 These proposed devices either
exploit the symmetric zero-bandgap Dirac-cone bandstructure
of graphene or require the opening of energy bandgaps by
quantum confinement. Soon after the isolation of graphene,
semiconducting 2D crystals were reported.6–8 2D crystal
semiconductors have been found in the transition metal
dichalcogenide (TMD) material family, and the list is
expected to expand in the future.9 Taking advantage of an
energy bandgap, ultrathin channels, and absence of broken
bonds, conventional field-effect transistors (FETs) using 2D
crystal semiconductors have shown high promise in initial
investigations.7,10

A number of electronic switching devices have been pro-
posed recently to address the power-dissipation problems of
FETs.11 Among the proposed devices, the tunneling FET (or
TFET) has emerged as an attractive candidate. These devices
take advantage of the potential of interband Zener-tunneling
of electrons to beat the Boltzmann thermal limit of switching
of 60 mV/decade. Initial experimental demonstrations show
much promise.12–14 The availability of 2D semiconducting
crystals with bandgaps begs the question whether TFETs
with attractive properties can be realized with them. Such 2D
crystal TFETs, if realized, can take advantage of the ultrathin
nature of the layers, and the absence of broken bonds to ena-
ble scaling of such devices to much smaller dimensions than
three-dimensional (3D) crystal semiconductors. A critical
metric for TFETs is the on-state current, which is limited by
interband tunneling of electrons. To date, interband tunneling
in purely 2D semiconducting crystal junctions has not
received sufficient attention, certainly not to the extent it has
for 3D semiconductor p-n junctions since Zener’s15 and
Esaki’s works.16 In this work, we solve this problem. We
derive an analytical expression for the tunneling current in
2D crystal semiconductors. The expression highlights the de-
pendence of the tunneling current on the material parameters

of the 2D crystal semiconductor, such as its bandgap and
effective masses. We apply the results to a range of 2D crys-
tals, and discuss the implications for device applications.

Consider the 2D crystal p-i-n junction shown schemati-
cally in Fig. 1(a) with ohmic contacts to the p- and n-doped
regions. The contacts would form the source and drain con-
tacts of the corresponding TFET. We do not address the ex-
perimental challenges of doping and electrostatic gating in
this work and focus exclusively on evaluating the two-
terminal tunneling current. Assume the doping in the p- and
n-sides aligns the Fermi levels to the respective band-edges.
Then, under no applied bias, Ep

v ¼ En
c , and no net current

flows across the junction. Here, Ep
v is the valence-band edge

on the p-side and En
c is the conduction-band edge on the n-

side. Under the application of a reverse bias voltage V, a finite
energy window is created for electrons since Ep

v " En
c ¼ qV.

Within this energy window, electrons from the valence band
can tunnel into the conduction band on the other side, as indi-
cated in Fig. 1(b).

The electric current is obtained by summing the individ-
ual quantum-mechanical probability current contributions by
each k-state electron, and multiplying it by q, the electron
charge. The tunneling current is thus given by

IT ¼ q
gsgv

Lx

X

k

vgðkÞðfv " fcÞTwkb; (1)

where gs ¼ 2 is the spin degeneracy and gv is the valley
degeneracy for 2D crystal single layers. Single-layer TMD 2D
crystals have been found to have a direct bandgap with two
valleys at the K and K0 points of the Brillouin zone similar to
2D graphene,17 so we use gv ¼ 2. Lx is the macroscopic
length along the electric field (which will cancel out), vgðkÞ ¼
!h"1rEðkÞ is the group velocity of carriers in the band
EðkÞ; fv; fc are the occupation functions of the valence and
conduction bands, respectively, and Twkb is the interband tun-
neling probability given by the Wentzel-Kramers-Brillouin
(WKB) approximation. The sum is over all k-state electrons
that are allowed to tunnel. We note here that the tunneling
probability may be obtained by various means such as the
Landau-Zener approach, Bardeen’s transfer Hamiltonian, or
direct numerical evaluation by integration over evanescenta)Electronic mail: djena@nd.edu
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k-states in the bandgap. Since the results from the analytical
WKB approach are not vastly different from the alternate
approaches, we use this approach.

The tunneling probability Twkb is obtained by the WKB
approximation in the following manner. For 2D crystals,
electrons in the valence band of the p-side have a transverse
kinetic energy Ey ¼ !h2k2

y=2m%v , where !hky is the transverse
quasi-momentum and m%v is the valence band effective mass.
The WKB tunneling probability is then given by18

TWKB ¼ exp "
4
ffiffiffiffiffiffiffiffiffi
2m%R

p
ðEg þ EyÞ3=2

3q!hF

" #

' T0 exp "
Ey

!E

" #
; (2)

where T0 ¼ exp½"4
ffiffiffiffiffiffiffiffiffi
2m%R

p
E3=2

g =3q!hF) is the tunneling proba-
bility of perpendicularly incident electrons, !E ¼ q!hF=2ffiffiffiffiffiffiffiffiffiffiffiffiffiffi

2m%REg
p

;F is the (constant) electric field in the junction,
and m%R is the reduced effective mass given by m%R ¼ m%cm%v
=ðm%c þ m%vÞ: m%v ;m

%
c are the effective masses of electrons of

the valence and conduction bands, respectively. The above
expression is found to be consistent with experimental
results.18 Note that the tunneling probability of electrons is
lowered exponentially with their transverse kinetic energy as
a consequence of lateral momentum conservation in the tun-
neling process. We neglect phonon emission or absorption
processes here. To evaluate the tunneling current, we attach
this tunneling probability to each electronic k-state and sum
it over all electrons incident on the tunneling barrier.

In Fig. 1, we concentrate on a particular 1D line as
shown by the dashed line, at the p-i junction, which is the
source side. Half of the electrons in the valence band in that

line move to the right in the þkx direction, as indicated in
the semi-circle in the k-space in Fig. 1(c). Since there are
negligible electrons in the conduction band in that line, the
current there must be carried by electrons in the valence
band. Which of these right-going electrons are allowed to
tunnel through the gap? In the absence of phonon scattering,
tunneling is an elastic process. This enforces the energy con-
servation requirement

Ep
v "

!h2

2m%v
ðk2

xp þ k2
ypÞ ¼ En

c þ
!h2

2m%c
ðk2

xn þ k2
ynÞ; (3)

with the additional requirement that the lateral momentum
be conserved, i.e., kyp ¼ kyn ¼ ky. The energy and momen-
tum conservation requirements thus lead to the relation

k2
xp þ

m%v
m%R

k2
y ¼

2m%vqV

!h2
" m%v

m%c
k2

xn: (4)

Let us define k2
max ¼ 2m%vqV=!h2 and g2 ¼ m%v=m%R. Note

that kmax, the radius of the semi-circle in the k-space shown
in Fig. 1(c), is controlled by the applied voltage. Since there
is an electric field in the x-direction, the momentum in that
direction will not be conserved. For the electron to emerge
on the right (n-)side, kxn must be non-zero, and thus k2

xn * 0,
which implies

k2
xp þ g2k2

y + k2
max: (5)

The above condition defines a restricted elliptical area AT of
the k-space semi-circle for electron states that are allowed to
tunnel, as shown in Fig. 1(c). We can now evaluate the tunnel-
ing current for 2D semiconductor p-i-n junctions. In the
expression for the tunneling current (Eq. (1)), the group veloc-
ity term is that of the valence band k-state vgðkÞ ¼ !hkx=m%v .
We skip the p-subscripts, since it is clear that the electrons
tunnel from the valence band of the p-side. The expression for
the tunneling current is then

IT ¼ q
gsgv

Lx

X

ðkx;kyÞ2AT

!hkx

m%v
ðfv " fcÞT0exp "

!h2k2
y

2m%v !E

" #

: (6)

The sum over k-states is converted into an integral via the
standard recipe

P
kð…Þ! LxLy=ð2pÞ2 ,

Ð
dkxdkyð…Þ. Due

to the "filtering" brought about by the requirements of energy
and momentum conservation (Eq. (5)), the k-space integral is
evaluated over the restricted area AT . The tunneling current
per unit width or the current density is then given by

J2D
T ¼

IT

Ly
¼ qgsgv!hT0

ð2pÞ2m%v

ðþkmax=g

"kmax=g

dky

, exp "
!h2k2

y

2m%v !E

" # ð
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k2

max"g2k2
y

p

0

dkxkxðfv " fcÞ: (7)

Electrons incident normal to the junction have no transverse
momentum, and carry most of the tunneling current. The

FIG. 1. Schematic depiction of a 2D crystal p-i-n junction (a), the energy
band-diagram (b), and the k-space distribution of current densities (c). The
k-states contributing to interband tunneling current and the group velocity
are indicated.
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number of electron states allowed to tunnel reduces as their
transverse directed momentum increases, as shown sche-
matically in Fig. 1(c). The current carried by these states
with transverse momentum is further damped by the
½"Ey= !E) factor, leading to further filtering and momentum
collimation. The maximum tunneling current is carried by
states closest to ðkx; kyÞ ¼ ðkmax; 0Þ as indicated by the shad-
ing in the figure.

To evaluate the current, the integral in k-space should be
evaluated. At T ! 0K; fv " f c ' 1, for the energy window
of current-carrying electrons. This relation remains an excel-
lent approximation at room temperature. The interband tun-
neling current per unit width (lA/lm) in a 2D crystal p-i-n
junction then evaluates to

J2D
T ¼

q2

h

gsgvT0

2p

& ' ffiffiffiffiffiffiffiffiffiffiffi
2m%v !E

!h2

s

,
ffiffiffi
p
p

V " V0

2

& '
Erf

ffiffiffiffi
V
p
ffiffiffiffiffi
V0

p
& '

þ
ffiffiffiffiffi
V

V0

r
exp " V

V0

& '" #
;

(8)

where Erf½…) stands for the error function, and we have
defined V0 ¼ g2 !E=q. Equation (8) is the central result of this
work. The expression shows the dependences on various
bandstructure and junction parameters explicitly. For small
reverse bias voltages V - V0, the tunneling current varies as
J2D

T . V3=2 to leading order. This is consistent with a recent
report investigating dimensionality effects on tunneling.19

For larger voltages when V / V0, Erf½…)! 1, and we get a
linear dependence of the tunneling current on the voltage

J2D
T '

q2

h

gsgv

2p

( ) ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2pm%v

!h2
:

q!hFffiffiffiffiffiffiffiffiffiffiffiffiffiffi
8m%REg

p
s

, T0

" #

V; (9)

where the Landauer quantum of conductance is split off.
The entire square root term is an effective wavevector with
units of inverse length, leading to units of current per unit
width. The corresponding current density for tunneling cur-
rent in 3-dimensional semiconductors is given by J3D

T

' q2

h ð
gsgv

2p Þ
ffiffiffiffiffiffiffiffiffiffi
2m%REg

!h2

q
qF
Eg

& '
, T0

" #
V with units of current per

unit area. The WKB term is similar for 2D and 3D crystals.

The prefactor for 3D semiconductors goes as .F
ffiffiffiffiffiffiffiffiffiffiffiffiffi
m%=Eg

p
,

whereas for 2D crystals, it goes as its square root

.
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
F

ffiffiffiffiffiffiffiffiffiffiffiffiffi
m%=Eg

pq
. In quasi-2D systems, multiple subbands

may be involved in transport. Then, we sum the current
from each subband with the respective band parameters.
When the temperature T is high, the assumption fv " fc ' 1
may no longer be suitable. In that case, the 2D tunneling
current becomes

J2D
T ¼

qgsgvT0kBT

ð2pÞ2!h

ðþkmax=g

"kmax=g

, Ln
ðebðqV"g2EyÞ þ e"bEyÞð1þ ebðqV"EyÞÞ
ðebðqV"g2EyÞ þ ebðqV"EyÞÞð1þ e"bEyÞ

( )

, exp "
Ey

!E

" #
dky; (10)

where b ¼ 1=kBT and kB is the Boltzmann constant. We
have not simplified this expression analytically, but the nu-
merical evaluation is discussed. The interband tunneling cur-
rent densities of various 2D crystals at T¼ 4 K and 300 K are
plotted as solid and dashed lines in Fig. 2(a), respectively.
As is evident, the temperature dependence is rather weak.
The material constants (bandgaps and effective masses) are
obtained from Refs. 17 and 20. We note that the field F is
determined by the choice of doping, bandgap, external
dielectrics, and in the case of a 3-terminal TFET geometry,
the gate voltage.

The tunneling current densities for MoS2 and the family
of TMDs are found to be low owing to their large bandgaps.
For example, the current density approaches .0.1 lA/lm for
MoTe2 at a high field of 4 MV/cm. The tunneling current
density of 2D graphene can be higher (.few mA/lm), but it
lacks a bandgap. For TFET applications, 2D crystals with
smaller bandgaps are necessary for boosting the current. For
example, tunneling currents for 2D crystals with bandgaps of
0.5 eV and 1.0 eV with corresponding lower effective masses

FIG. 2. (a) Interband tunneling current den-
sity for various 2D crystal semiconductors
at a reverse bias of V¼ 0.3 V. The solid
lines are at T¼ 4 K, and the dashed lines at
T¼ 300 K, and the temperature dependence
is weak. (b) Current-voltage curves at vari-
ous temperatures at a junction field F¼ 4
MV/cm for a 2D crystal semiconductor with
band parameters indicated. (c) Same as (b),
but for the 2D crystal MoTe2.
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are plotted in Fig. 2(a). The currents for such crystals exceed
.100 lA/lm at the highest junction fields, and thus can be
attractive for high-performance TFET applications. Such
small-bandgap materials could be intrinsic 2D crystals or
derived from interaction-induced bandgap of Dirac-cone sur-
face states in thin topological insulator materials.21 Another
possibility is in bilayer graphene, where breaking the layer
symmetry by vertical electric fields opens a small bandgap.

The tunneling current of MoTe2 and a 2D semiconductor
crystal with Eg¼ 1.0 eV and m*¼ 0.1m0 (m0 is free electron
mass) as a function of the voltage at different temperatures is
shown in Figs. 2(b) and 2(c). Note the J2D

T . V3=2 dependence
at low voltages, the approximately linear relation J2D

T . V at
high voltages, and the rather weak temperature dependence.
Note that the current for the small effective mass 2D crystal is
orders of magnitude higher than MoTe2 in Figs. 2(b) and 2(c),
even though their bandgaps are similar. Is this always true?
Comparing the material parameters of Figures 2(b) and 2(c)),
a natural question is the relative importance of effective
masses and bandgaps. For III-V 3D semiconductors, the effec-
tive masses are proportional to the bandgaps, as would be
expected from interband repulsive interaction from basic per-
turbation theory.22 The equivalent picture is not clear yet for
2D semiconducting crystals. Therefore, we discuss all possi-
bilities by treating the effective mass and bandgap as inde-
pendent material parameters. Fig. 3 shows the interband
tunneling currents in 2D crystals at a high junction field for
various bandgaps, plotted for a range of effective masses.

As is evident from Fig. 3(a), there is a tradeoff in the
choice of effective mass and bandgap for maximizing the
tunneling current. Fig. 3(b) zooms in to highlight this cross-
over. For high-performance TFETs for digital switching
applications, currents exceeding 100 lA/lm are highly desir-
able. For 2D crystals semiconductors with bandgaps smaller
than .0.3"0.4 eV, a choice of a higher effective mass will
maximize the interband tunneling current, far exceeding typ-
ical transistor on-currents for high-performance switching.
But for larger bandgaps, a lower effective mass is more de-
sirable. It is essential that TFET devices switch off, which
may be problematic for 2D crystals with very small

bandgaps. For high-performance TFETs, 2D crystals with
bandgaps in the .0.6-0.7 eV range and effective masses of
0.1-0.5m0 can thus be potentially very attractive.

On the other hand, there are various low-power applica-
tions of wider bandgap 2D crystals that do not require high
on-currents, as long as they can beat the Boltzmann limit of
60 mV/decade. Such applications may include low-power
sensors.23 Other applications are expected to emerge as such
devices become available. For such applications, the low
tunneling currents of TMD 2D crystals might be actually
turned into an advantage. We summarize this work by hop-
ing that the analytical evaluation of tunneling currents in 2D
crystals will be found useful for guiding the choice of the
right materials for the specific applications. The analytic
expression of the current vs. voltage can also form the back-
bone for compact modeling and design of 2D crystal TFETs
when combined with the device electrostatics.
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