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Tunneling Transistors Based on
Graphene and 2-D Crystals
Graphene-based tunneling transistors and how these compare to 2-D transistors made
from the GaAs/AlGaAs materials systems is the topic of discussion in this paper.

By Debdeep Jena, Member IEEE

ABSTRACT | As conventional transistors become smaller and

thinner in the quest for higher performance, a number of

hurdles are encountered. The discovery of electronic-grade 2-D

crystals has added a new ‘‘layer’’ to the list of conventional

semiconductors used for transistors. This paper discusses the

properties of 2-D crystals by comparing them with their 3-D

counterparts. Their suitability for electronic devices is dis-

cussed. In particular, the use of graphene and other 2-D crystals

for interband tunneling transistors is discussed for low-power

logic applications. Since tunneling phenomenon in reduced

dimensions is not conventionally covered in texts, the physics

is developed explicitly before applying it to transistors. Though

we are in an early stage of learning to design devices with 2-D

crystals, they have already been the motivation behind a list of

truly novel ideas. This paper reviews a number of such ideas.
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I . INTRODUCTION

Semiconductors come in many crystal forms. Since their
discovery in the early 20th century, the semiconductors
used in electronic and optical devices are of the 3-D crystal
form. Three-dimensional crystal semiconductors have re-
mained at the heart of such devices from the earliest
‘‘cat’s whisker’’ detectors [1] to the latest billion-transistor

silicon complementary metal–oxide–semiconductor
(CMOS) [2], [3] and quantum-well (QW) lasers [4]. As
the understanding of the physics of electron transport and
electron–photon coupling sharpened, it became clear that
controlling the potential energy landscape of electrons
could lead to massive boosts in device functionality and
performance.

The first level of direct control of the ‘‘energy-band
diagrams’’ was by chemical doping, which involved replac-
ing a small number of atoms of the 3-D semiconductor by
those with higher or lower valence. The next advance
involved varying the chemical nature of the crystal along
specific directions, which marked the birth of semiconduc-
tor heterostructures [5]. These advances taught electrons
‘‘new tricks,’’ and made possible the smallest and fastest
electronic switches [6], high-density memories, and the
most efficient light-emitting diodes (LEDs) and lasers [7].
These devices form the bedrock of computation, data
storage, solid-state lighting, and communication in today’s
information age.

At this time, in the early part of the 21st century, these
building blocks based on traditional device concepts are
approaching their performance limits. Therefore, new
ideas and new materials are necessary. For example,
photonic crystal, metamaterial, and plasmonic concepts
are advancing the area of optoelectronic devices beyond
what was thought possible before [8], [9]. Strong light–
matter interaction has been exploited to demonstrate
polariton lasers that take advantage of Bose–Einstein
condensation at room temperature for ultralow threshold
lasing [10].

Similarly, for electronic switching devices, a number of
approaches are being taken to address the future beyond
scaling. Conventional field-effect and bipolar transistors
operate on the basis of energy filtering of electrons (or
holes) flowing over a barrier. The barrier is electrosta-
tically controlled with a voltage. In an electrostatically
well-designed device, all of the control voltage is spent in
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moving the barrier. The electrons carrying the current
are spread in a band according to the Fermi–Dirac
distribution, with a Boltzmann tail in energy. The energy
filtering thus leads to a current dependence of the form
I ! exp½qV=kBT#, where q is the electron charge, V is the
voltage, T is the temperature, and kB is the Boltzmann
constant. When operated in this fashion, the current
cannot be changed any steeper than S ! ðkBT=qÞ ln 10 !
60 mV/decade. This subthreshold swing (SS) ‘‘limit’’ is
often referred to as the ‘‘thermal limit’’ or the
‘‘Boltzmann limit’’ (though Boltzmann did not set this
limit). We refer to this condition as the SS limit to avoid
confusion.

An electronic switch must have its on- and off-states
clearly demarcated for performing digital (Boolean) logic.
Let us say this demarcation is set to ION=IOFF ¼ 104. To
achieve it, a voltage supply of at least 4' 60 mV ¼ 0.24 V
is necessary. Since the speed of switching and the dynamic
and static power dissipation of transistors are strong
functions of the supply voltage, the SS limit sets a floor of
minimum power dissipation. This issue is described in
sufficient detail in a number of recent articles that moti-
vate the search for new materials and ideas for going
beyond the SS limit [11]–[13].

Now there is nothing particularly fundamental about
the SS limit. Devices that do not operate on the traditional
transistor mechanism exist today and operate below the SS
limit. An example is a nanoelectromechanical system
(NEMS), which is the analog of a mechanical relay. Sub-
stantial progress has been made in this area [14]. Due to
mechanical moving parts, these devices are currently slow,
but are expected to improve with scaling.

A number of relatively new ideas are being explored at
this time for switching devices beyond the SS limit. Some
exploit impact ionization to obtain sub-SS limit operation
[15], [16]. Other devices aim to use correlated electron
effects; for example, if electrons can be made to ‘‘pair up’’
similar to Cooper pairs in superconductors, but at room
temperature, the SS limit would be cut in half. If the
control voltage could be internally ‘‘stepped up’’ through
novel ferroelectric gates, sub-SS limit devices can be
realized [17]. Other routes involve the internal trans-
duction of the voltage into other state variables such as
strain, spin, or electron localization [18]. Among these
strategies, a transistor concept based on interband tun-
neling transport has emerged as an attractive candidate
for switching. This paper will focus on this device. The
tunneling field-effect transistor (TFET) can be realized
in traditional 3-D crystal semiconductors and their
heterostructures.

However, since the discovery of graphene in 2004,
device engineers have a new class of materials in 2-D
crystals at their disposal. In this paper, we discuss pos-
sible realizations of TFETs with 2-D crystals, and com-
pare them with 3-D crystal counterparts. In the process
of this discussion, a number of novel features of 2-D

crystals will emerge that distinguish them from tradi-
tional 3-D crystal semiconductors. These novel features
of the new material family offer a compelling case for
investigating them further. To motivate their suitability
for electronic devices, we first discuss the various 2-D
crystal materials and their properties. We do so against
the backdrop of their ubiquitous 3-D crystal semicon-
ductor counterparts.

II . TWO-DIMENSIONAL CRYSTALS

Two-dimensional crystals exploded into the limelight in
2004 with the remarkable reports of the isolation of ato-
mically thin graphene [19]–[21]. What is often overlooked
is that the early reports [22] also presented evidence of the
isolation of single-layers of BNVan insulator or a wide-
bandgap semiconductor, MoS2Va traditional semicon-
ductor, and NbSe2Va superconductor with possible
charge-density wave electronic phases. Single layers of
the cuprate high-Tc superconductors were also isolated. It
is interesting to note that the voltage ‘‘scaling’’ of silicon
CMOS processors stalled around the same time, marking
the move toward multicore processors [23]. One of the
reasons for paradigm shift was the unsustainable increase
in dynamic and off-state power dissipation due to the SS
limit and high-frequency operation. Whether 2-D crystals
can help in this arena remains to be seen. We first discuss a
few properties of 2-D crystals and their suitability for
electronic devices.

Fig. 1 is a schematic representation of the structure of
crystals of various dimensions. The bottom row shows the
atomic building blocks. The first column shows the ubi-
quitous 3-D crystal semiconductors. The second column
shows the emerging family of 2-D crystals and their
many variants. The third and fourth columns indicate
ideal 1-D and 0-D structures. Atomic chains have been
investigated for their transport properties [24], and a
benzene ring can be considered either as an atomic
‘‘ring,’’ or even a basic 2-D crystal unit. An atom is a
perfect 0-D structure in which electrons are localized in all
three dimensions. We note that the electrons in an atom
still move in 3-D, but their energy spectra are discrete and
gapped; they do not form bands that are necessary for
transport. It is in this sense that they are 0-D. We focus our
attention on 2-D crystals, and their differences from 3-D
crystal semiconductors.

The building blocks for 3-D semiconductors are typi-
cally tetrahedrally bonded atoms. The lattice is 3-D, and
the basis typically consists of two atoms. For example,
electrons in 3-D crystals from group IV elements (Si, Ge,
etc.) occupy [core] ms2mp2 orbitals, where m is the row
number in the periodic table, and [core] represents the
core electrons that do not participate in chemical
bonding directly. Electrons from the outermost s and p
orbitals of nearest neighbor atoms pair up to form sp3

bonds. An sp3 bond is inherently 3-D, and so is the
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resulting semiconductor crystal. The natural crystal is
thus a bulk 3-D semiconductor. A termination such as a
surface results in dangling bonds, a fraction of which
might reconstruct.

The corresponding building block of a 2-D crystal
consists of a planar 2-D lattice. For graphene and BN, the
basis consists of two atoms attached to a hexagonal planar
lattice. These chemical bonds in the two-atom basis for
graphene and BN are of the sp2 type. So the chemical
bonds of their basis are also planar. In the second column
of Fig. 1, the underlying planar structure of 2-D crystals is
shown. Attached to each point of intersection is one
carbon atom for graphene, alternating B and N atoms for
BN, and a basis of X-M-X for transition metal dichal-
cogenides (TMDs). TMD 2-D crystals share the same
planar lattice geometry of graphene and BN. But the basis
of TMD 2-D crystals consists of three atoms of the form
MX2, where M is the transition metal chemically bonded
to two chalcogenide atoms X. The chemical bonds in
TMD 2-D crystals (e.g., MoS2;WSe2;WS2, etc.) involve
s-, p-, and d-orbitals, and the two M-X bonds stick out of

the center 2-D plane containing the transition metal atom
M [25]. Thus, unlike its lattice, the basis of TMD 2-D
crystals is not perfectly planar. Recent reports also in-
dicate the possible existence of 2-D forms of Si (silicene),
Ge (germanene), and possibly AlN and GaN [26]–[28],
[102]. Single layers of 2-D crystals are typically less than
1 nm in thickness. An exotic form of a 2-D crystal semi-
conductor may also exist when two surfaces of topolog-
ical insulators come close to each other [29]. These
materials have been less explored than the others dis-
cussed here.

Unlike a perfect 3-D crystal, a perfect 2-D crystal has
no broken/dangling bonds on its surface. The quasi-low-
dimensional structures formed from 3-D crystals such as
2-D nanomembranes, 1-D nanowires, and 0-D nano-
crystals are still volume elements deriving from 3-D
bonding, and necessarily have dangling bonds on their
surfaces. These broken bonds may be passivated by either
dielectrics, or by lattice-matched or strained heterostruc-
tures. In contrast, the various dimensional structures de-
riving from 2-D crystals are ‘‘hollow’’ and are ‘‘all-surface.’’

Fig. 1. A schematic representation of ‘‘crystals’’ of the many spatial dimensions that result from various building blocks. The building blocks

contain atomic bases that form 3-D bonds in the first column, 2-D planar bonds in the second column, and 1-D linear bonds in the third column.

The ideal 0-D structure is an atom in the fourth column.
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Two-dimensional crystal sheets may be stacked to form
3-D structures with weak van-der-Waal’s interlayer
bonding. They can be rolled up into quasi-1-D nanotubes,
or into 0-D buckyballs (C60). The symmetry of a 2-D
crystal is broken at its edge. Similar to the surface state
reconstruction or passivation of the surfaces of 3-D crys-
tals, the edge states can reconstruct and tie up the dangling
bonds. For special cases, such as in buckyballs, the chemi-
cal bonding is seamless and there are no broken bonds.
Indeed, the icosahedral geometry of the buckyball belongs
to one of the five platonic solids, which have mathemat-
ically represented ‘‘perfection’’ in shape since the earliest
times [30], [31].

For electronic devices using field effect, the absence of
dangling bonds is a major advantage for planar 2-D crystals,
since electrons trapped in them serve to shield electric
field lines from entering the bulk of the corresponding 3-D
semiconductors. We now discuss the electronic properties
of 2-D crystals and compare them to those of 3-D crystal
semiconductors.

A. Electronic Properties of 2-D Crystals
The electronic orbitals that form the family of 2-D

crystals are shown in Fig. 2. Electron states at the conduc-
tion and valence band edges of 3-D semiconductors derive
from various admixtures of sp3 bonds. For direct-gap
semiconductors such as GaAs and GaN, the conduction
band edge is mostly s-like. The spherical symmetry of the
s-orbitals imparts electrons in the conduction band their
isotropic nature. The electronic states at the valence
band edge on the other hand are more p-like. Because
p-orbitals are directional, the hole effective mass is

anisotropic. The imbalance of the nature of chemical
bonding in 3-D crystals semiconductors thus also results
in an asymmetry in the curvature or the effective mass of
the conduction and valence band states. In modern
complementary logic devices, symmetry is a highly de-
sirable characteristic. The degree of asymmetry between,
for example, nMOS and pMOS devices dictates the
geometry and layout of circuits that could be considerably
simplified by symmetry.

The covalent bonds in graphene and BN are of the sp2

kind. They are responsible for the structural properties of
the crystal. The leftout pz orbital sticks out of the 2-D
plane. The electrons in these orbitals can hop between
nearest neighbors, leading to the electronic conductivity
and optical properties of such crystals. In graphene and
BN, the structural properties such as thermal conductivity
and mechanical stability derive from the covalent sp2

bonds. But the electronic and optical properties derive
from the delocalized pz orbitals. There is a wide energy
separation between the sp2 and pz energy bands. In this
sense, the electronic properties of such 2-D crystals have a
different origin than their structural properties. This is in
contrast to 3-D semiconductors, where the structural and
electronic properties derive from the same sp3 electronic
band states.

Electrons in 3-D crystals can be quantum-mechanically
confined to move in 2-D and 1-D, or localized in 0-D by
chemical and geometrical constraints in heterostructures,
as shown in the first column in Fig. 1. This is achieved by
taking advantage of energy band offsets around the
bandgap. Conduction band offsets DEC confine electrons,
and valence band offsets DEV confine holes. We note here

Fig. 2. Energy band alignments of various 2-D crystals compared to silicon. The relative energy band offsets of graphene, BN, and transition-metal

dichalcogenides are shown. The numbers at the center indicate the respective bandgaps reported at this time, but are subject to refinement

with further experiments. An energy scale from the vacuum level is also indicated, showing a work function (or electron affinity) of intrinsic

zero-gap 2-D graphene to be !4.5 eV. The conduction and valence band edge states of Si, graphene, and BN are formed of linear combinations

of js >- and jp >-orbitals, whereas those of the transition-metal dichalcogenide 2-D crystals involve jd >-orbital states at the band edges.

The presence of d-orbital states near the Fermi level implies that some of these 2-D crystals can exhibit electronic phenomena that require

many-particle effects such as magnetism and superconductivity.
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that the 2-D confinement of electrons in a quantum well in
a 3-D crystal leads to a quasi-2-D electron gas (2-DEG).
This means there are multiple 2-D electronic subbands
whose spacing in energy grows as the inverse square of the
spatial confinement. In sharp contrast, there is just one
band for 2-D electron systems in single-layer 2-D crystals,
since the electron wave function cannot spread sufficiently
out of the plane in equilibrium.

The energy bandgaps and the band lineups of a few 2-D
crystals are shown in Fig. 2. The figure also indicates the
chemical bonding schemes that characterize them, along
with their relative positions with respect to the vacuum
energy level [32]–[34]. A distinctive feature of the 2-D
crystals is that their energy gap windows are not populated
by surface states in sufficiently crystalline sheets, as is
necessarily the case for 3-D crystals. Thus, the measure-
ments of their band alignments are relatively simpler, as
described in [33].

Graphene is a zero-bandgap semiconductor, with the
energy dispersion Eðkx; kyÞ ¼ (!hvFjkj, where !h is the re-
duced Planck’s constant, vF ¼ 108 cm/s is called the Fermi
velocity, and jkj ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k2

x þ k2
y

q
¼ 2!=" is the electron wave

vector. The dispersion is taken around the Dirac points in
the band structure, which are located at the twofold de-
generate K-points in the k-space, as shown in Fig. 3. These
states are similar to the conduction band edge or valence
band edge states of 3-D semiconductors. The positive
branch is the conduction band, and the negative branch is
the valence band. We note the perfect symmetry of the
bands, which is quite distinct from traditional 3-D semi-
conductors. This symmetry is special, and has an important
bearing on tunneling transistors discussed later. The ener-
gy bandgap is zero. The density of states (DOS) of 2-D

graphene is given by #2-D
gr ðEÞ ¼ ½gsgv=2!ð!hvFÞ2# ' jEj,

where gs ¼ 2 is the spin degeneracy and gv ¼ 2 is the
valley degeneracy [35].

Two-dimensional BN has an energy bandgap of
!6.0 eV as a consequence of the broken crystal symmetry
in the basis, but its band extrema also occur at the K-points
in the Brillouin zone. Thus, it has the same valley de-
generacy as graphene. The effective mass characterizing
the symmetric conduction and valence bands of 2-D BN is
m* ! 0:6m0, where m0 is the free-electron mass [36]. The
DOS of 2-D BN looks like those of conventional 2-DEGs,
#2-D

BN ðEÞ ¼ ðgsgvm*=!!h2Þ ' $½E+ EC#. The major differ-
ence is the absence of higher subbands owing to the
absence of atoms out of the plane.

The bandstructures of 2-D crystal semiconductors of
the TMD family are being evaluated at this time [37], [38].
Initial experiments and theoretical models point out that
they too have their band extrema at the K-points. The
conduction and valence bands in single-layer TMDs appear
less symmetric than graphene and BN, but much more
symmetric than traditional 3-D semiconductor crystals. Ef-
fective masses ranging from m* ! 0:34m0 + 0:76m0 have
been calculated, and are expected to undergo refinement
through experimental measurements [39].

Two-dimensional crystal sheets typically occur in
nature in their stacked layered forms. The band structures
of the multilayer variants of graphene, BN, and TMDs are
distinct from the single-layer counterparts. The bandgap of
a stacked 2-D crystal is smaller than the single layer [40],
[41]. For example, graphite becomes a semimetal with a
negative bandgap. Similarly, when 2-D crystals are used to
form 1-D nanotubes (Fig. 1), quasi-1-D subbands appear,
and the bandgaps increase due to additional quantum
confinement. The DOS then acquires van Hove singular-
ities in a manner similar to quasi-1-D nanowires or quan-
tum wires formed of 3-D semiconductor crystals. In this
paper, we maintain focus on single-layer 2-D crystals and
occasionally mention their quasi-1-D and quasi-3-D va-
riants when they appear in context. The discussion of the
electronic band structures of 2-D crystals leads us naturally
to a point where we can gauge their suitability for electro-
nic devices. We start by discussing their suitability for
traditional field-effect transistors (FETs).

B. Suitability of 2-D Crystals for
Traditional Transistors

The operation of a FET hinges on electrostatics and
transport of charge carriers. FETs based on 3-D crystal se-
miconductors have been scaled to !10 s of nanometer
channel lengths in the quest to achieve higher perfor-
mance. As the source/drain separations have been scaled, it
has become necessary to reduce the channel thickness. This
requirement is driven by the need for a gate metal to
exercise electrostatic control over mobile electrons and
holes. If the gate is farther away from the carriers than the
S/D distance, it loses control over them. The device then

Fig. 3. The k-space picture of 2-D crystals such as graphene, BN,

and the transition-metal dichalcogenide MX2 compounds. A good

understanding of the k-space picture is important for choosing the

right materials for device applications, and especially important for

tunneling transistors. Since the real-space lattice is hexagonal in the

2-D plane, so is the k-space lattice. Since the interlayer separation is

larger than the in-plane lattice constant, the hexagonal Brillouin zone

is shorter in the vertical direction. The important high-symmetry

points are labeled. Graphene, BN, and single-layer MoS2 have their

conduction band edge and valence band edges at the K-points, which

leads to twofold degeneracy. The conduction band edge of multilayer

MoS2 at this point is believed to be along the G + K minimum as shown,

which makes it an indirect-bandgap semiconductor, and imparts

to it a valley degeneracy of 6 by symmetry, similar to silicon.
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cannot be switched on or off as effectively as is needed for
the transistor to operate in a circuit. This necessity is at the
root of the reason for the move to silicon-on-insulator (SOI)
and FinFET type of topologies [42]. The silicon channels
have thus become more 2-D in SOI structures [43], and
closer to 1-D in FinFETs and nanowire geometries.

A quantitative statement of the importance of electro-
statics is obtained from a solution of the Poisson equation
for a FET. For a FET with a semiconductor layer of
thickness ts of dielectric constant "s gated through an in-
sulator of thickness tox and dielectric constant "ox, the
Poisson equation for the electric potential V takes the form
@2

x V ! V=l2, where l ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
tstoxð"s="oxÞ

p
is the characteristic

‘‘scaling length’’ [44]. This length determines the smallest
distances over which electric potential may be dropped.
Therefore, for scaling to the smallest lengths, high-K insu-
lators and ultrathin channels are desirable. This argument,
in conjunction with the absence of dangling bonds and the
associated interface traps highlights the attractive feature
of 2-D crystals for ultrascaled FETs based on electrostatics
arguments alone. Furthermore, 2-D crystal insulators such
as BN can eliminate dangling bonds altogether in planar
FET geometries.

As the channels of 3-D semiconductors are thinned
down, the roughness of the surfaces causes degradation of
the carrier transport due to surface-roughness scattering.
The root of this form of scattering is the effect of the
roughness on the quantization of energy levels. For exam-
ple, in a SOI structure of thickness t, the quantization
energy of subbands varies as E ! !h2=m*t2. Variation of the
layer thickness by Dt leads to a perturbation of the subband
edge by DE ! ð2!h2=m*t3ÞDt. Since the scattering rate is
proportional to the square of the perturbation, the mobility
degrades as % ! t6, i.e., roughly as the sixth power of the
width [45]. Thus, for very thin layers of a 3-D semicon-
ductor, such as those used in ultrathin body (UTB) tran-
sistors, the transport properties suffer from the surface
roughness. Two-dimensional crystals offer an ideal solu-
tion to this problem. Two-dimensional crystals are intrin-
sically of an atomically thin body (ATB) nature. When
sufficiently pure, they do not have surface roughness. The
attractiveness of TMD 2-D crystal semiconductors was
brought to sharp focus with the demonstration of single-
layer MoS2 FETs [46]. A FET with 108 on/off ratio at
room temperature and electron mobility of !200 cm2/Vs
was achieved with a single layer of MoS2 2-D crystal of
thickness G 1 nm. The SS was close to ideal, thanks to the
absence of broken bonds and associated interface traps.
Such performance has never been measured in devices
made from 3-D crystals of the same thickness. Though the
initial results look promising, the dynamic range and re-
liability of the performance metrics will be assessed care-
fully in the next few years.

Additional novel features of charge transport in 2-D
crystals that have been predicted and recently observed
include dielectric-mediated carrier mobilities. The basic

premise is that the Coulomb interaction V ! q=4!"r be-
tween charged impurities and mobile channel carriers is
mediated by the dielectric constant " of the space sepa-
rating them. In 3-D semiconductors, the Coulomb inter-
action is dominated by the bulk dielectric constant of the
semiconductor itself (i.e., " ¼ "s) since the charged
impurity and the charge carrier are effectively buried in-
side and in close proximity. On the other hand, in 2-D
crystals, most of the electric field lines connecting the
charged impurity to the mobile carrier actually lie outside
the 2-D crystal itself, in the surrounding dielectric. This
effectively provides an external knob to damp Coulomb
scattering and improve carrier mobilities, since " ! "ox

for this interaction [47]. Use of high-K dielectrics has
been observed to damp scattering and improves charge
mobility in 2-D crystals such as graphene [48], [49] and
MoS2 [46]. The exact mechanisms likely also include
phonons.

At this time, the understanding of transport in 2-D
crystals is evolving. It is clear that the interactions that
limit charge transport in 3-D semiconductors and hete-
rostructures were intrinsic to the 3-D crystal itself. But for
2-D crystals, these interactions can be tuned based on
what we put around them. This is because in 2-D crystals
we have direct access to the electrons, their spins, and
atomic vibrations to an unprecedented degree. As our
understanding of these mechanisms evolves, the level of
direct access to the physical properties may well prove to
be the defining factor that differentiates 2-D crystal de-
vices from their 3-D counterparts. This feature is simul-
taneously an advantage and a challenge, since noise and
reliability of the desired nanoscale devices must be robust
for usability.

C. Possibility of 2-D Crystal Heterostructures
Heterostructures based on 3-D crystals take advantage

of energy band offsets that originate from differences in
chemical composition. The concept of quasi-electric fields
in heterostructures breaks the symmetry of electrical
forces acting on electrons and holes. In a semiconductor of
constant chemical composition (uniformly doped, or p-n
homojunctions), the electric force acting on electrons
and holes is the same. This is not true in a heterostructure
[5]. This broken symmetry is central to quantum confine-
ment and high oscillator strengths that have led to high-
efficiency LEDs and lasers. QW FETs and even the MOSFET
gain from the concept of quantum confinement. In graded-
base heterostructure bipolar transistors (HBTs), the broken
symmetry is central in speeding up electrons with a quasi-
electric field in the same region in space where there is
no field acting on holes [50]. Examples of such hetero-
structures based on 3-D crystal semiconductors include
SiGe/Si, AlGaAs/GaAs/InGaAs, and AlGaN/GaN/InGaN
material systems. Except in special cases, most of such 3-D
crystal heterostructures have strain due to the lattice
mismatch. Strain can be desirable for affecting the carrier
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transport or as the driving force for the formation of
quantum dots by the Stranksi–Krastanov mechanism during
epitaxy. Strain can often be undesirable, since it can lead to
relaxation and defect formation beyond certain critical
thicknesses.

Heterostructures based on 2-D crystals are at their in-
fancy. However, a number of interesting features are likely
to emerge in them. Initial demonstrations of in-plane 2-D
crystal heterostructures such as graphene seamlessly con-
nected to BN have been experimentally observed, and
provide exciting opportunities in device design [51].
Hybrid heterostructures composed of 2-D crystals such
as graphene placed on 3-D semiconductors such as silicon
have been used to demonstrate new device concepts. One
recent example is a graphene–Si Schottky diode where
graphene may be thought of as the Schottky ‘‘metal’’
contact. However, unlike a typical metal, the Fermi level
of graphene can be tuned with a third gate electrode,
which leads to a variable Schottky-barrier height [52]. This
idea was used to demonstrate a variable-barrier transistor
(or the so-called ‘‘Barristor’’).

Out-of-plane or vertical heterostructures are also real-
ized when 2-D crystals are stacked on each other. Such
heterostructures do not suffer from lattice mismatch re-
quirements, since there are no interlayer covalent bonds.
The weak van der Waal’s interlayer bonding in principle
allows unstrained integration of 2-D crystal layers of dif-
ferent material properties. One may envision vertical
heterostructures of 2-D crystal metals, semiconductors,
insulators, and perhaps a wider range of materials. Due to
the absence of broken bonds, the interfaces are expected to
be pristine and devoid of electronic trap states. Interlayer
transport of electrons would involve tunneling. The rota-
tional alignment of the 2-D crystal layers might play an
important role in such heterostructures. These features are
currently under investigation, and are certain to lead to a
range of new applications. Initial demonstrations of a
graphene–BN–graphene and graphene–MoS2–graphene
heterostructures tunneling transistors have been recently
reported [53]. A proposed device called the bilayer pseudo-
spin FET (BiSFET) is based on many-body excitonic con-
densation of electron–hole pairs in closely spaced layers of
graphene. It falls under the category of vertical 2-D crystal
heterostructures [54]. Its single-particle counterpart, a
tunneling transistor that takes advantage of the symmetry
of the bandstructure of some 2-D crystals, is called the
‘‘SymFET’’ [55]. These tunneling devices that are rooted in
2-D crystals are described in Section V.

D. Maturity of 2-D Crystals and Material Challenges
Since the field of 2-D crystal semiconductors is rela-

tively young, a short discussion of the material challenges
is necessary. Since the initial demonstrations in 2004, the
large-area growth capability of single-layer graphene has
expanded rapidly [21]. At this time, epitaxial single-layer
graphene on several-inch-diameter SiC wafers are avail-

able [56], [57]. Chemical vapor deposition (CVD)-grown
graphene has been realized on metals, and transferred to
other substrates [58]. Nanoribbons have been fabricated
on CVD-grown graphene [59]. CVD-grown graphene has
shown promise for larger area crystals than epitaxial
graphene, which is limited to the size of the starting 3-D
crystal substrate. The crystal quality is not perfect yet, but
as was the case in the development of 3-D crystals, there is
reason to believe it will undergo drastic improvements in
the near future.

Similarly, BN 2-D crystals have been grown by CVD, as
have electronic-grade MoS2 and WS2 layered materials
[60]–[62]. However, it is also important to realize that
most forms of 2-D crystals have been produced in large
volumes in their layered forms [63]. They have already
found industrial applications in chemical catalysis (MoS2,
graphite), lithium–ion batteries (lithium cobaltate and
layered carbon), lubricants (MoS2), neutron moderation in
nuclear reactors (graphite), and thermally and mechani-
cally refractory crucibles used in much of electronic
material and device processing (BN and graphite). The
development of electronic grade counterparts thus is
expected to heavily leverage the considerable prior existing
knowledge and industrial base for these materials.

A major immediate challenge is to develop methods of
doping and controlling the Fermi level in 2-D crystals.
Possible methods with TMD 2-D crystals include chemical
substitutional doping, and/or modulation doping by taking
advantage of the rich intercalation chemistry of such la-
yered materials. Since doping control is intimately con-
nected to the ability to form low-resistance contacts, this
challenge assumes increased importance.

The development of electronic grade 2-D crystals is
expected to be rapid. The first active device applications
are expected to be in traditional FETs. For example, TMD-
based transistors offer attractive routes to large-area thin-
film transistors (TFTs) by virtue of low SS values and
respectable mobilities when compared to organic semi-
conductors and 3-D oxide materials [64]. But can they
offer new functionalities for high-performance devices be-
yond what is being envisioned with 3-D crystal semi-
conductors? To address that question, we focus the rest of
the paper on one of the possible candidates for high-
performance and low-power energy-efficient logic devices:
the tunnel FET (TFET).

III . TUNNELING TRANSPORT IN
SEMICONDUCTORS

Following the motivation provided earlier, we start with a
short introduction to tunneling transport and its incor-
poration into the heart of the transistor operation. The
discussion starts with an evaluation of the effect of dimen-
sionality on interband Zener tunneling [65], [66].

Consider the p+ i+ n junction shown in Fig. 4. We
make some simplifying assumptions that allow us to zone
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into the relevant physics immediately. Assume the doping
in the p- and n-sides are just enough to align the Fermi
levels at the respective band edges. Then, under no bias,
Ep

V ¼ En
c and no net current flows across the junction.

Under the application of a reverse bias voltage V, a finite
energy window is created for electrons since Ep

V+En
C¼qV .

Within this energy window, electrons from the valence
band can tunnel into the conduction band on the other
side, as indicated.

The current is calculated by summing the individual
contributions by each k-state electron. There are many
approaches to evaluate currents, but none is as transparent
as the formalism in the k-space. To illustrate, we write the
tunneling current as

IT ¼ q
gsgv

L

X

k

vgðkÞðfv + fcÞT (1)

where gs ¼ 2 is the spin degeneracy and gv is the valley
degeneracy. L is the macroscopic length along the electric
field (which will cancel out), vgðkÞ ¼ !h+1rEðkÞ is the
group velocity of carriers in the band EðkÞ, fv; fc are the
Fermi–Dirac occupation factors of the valence and con-
duction bands, and T is the tunneling probability. The sum
is over k-states for electrons that are allowed to tunnel. We
illustrate the clarity of this approach by using the same
expression for evaluating Zener tunneling currents for
p+ i+ n junctions made of 3-D, 2-D, and 1-D crystals. We
first consider semiconducting crystals that have a bandgap.

Then, we remove the bandgap criteria to allow for special
cases such as graphene.

The tunneling probability is obtained by the Wentzel–
Kramers–Brillouin (WKB) approximation [67]. For elec-
trons in the valence band of the p-side with transverse
kinetic energy E? ¼ !h2k2

?=2m*v , the WKB tunneling proba-
bility is given by [68]

TWKB¼exp +
4
ffiffiffiffiffiffiffiffi
2m*R

p
ðEg þ E?Þ

3
2

3q!hF

" #

,T0 exp+E?
E

" #
(2)

where T0¼exp½+4
ffiffiffiffiffiffiffiffi
2m*R

p
E3=2

g =3q!hF#, E¼q!hF=2
ffiffiffiffiffiffiffiffiffiffiffiffiffi
2m*REg

p
,

F is the (constant) electric field in the junction, and
m*R is the reduced effective mass given by m*R ¼
m*c m*v=ðm*c þ m*v Þ. This expression is found to be consistent
with experimental results [69]. Note that the tunneling
probability of electrons is lowered exponentially with their
transverse kinetic energy. To evaluate the tunneling cur-
rent, we attach this tunneling probability to each electro-
nic k-state, and sum it over all electrons incident on the
tunneling barrier.

Three-dimensional semiconductors: Consider the case
when the p+ i+ n junction is made of 3-D crystal semi-
conductors. In Fig. 4, we concentrate on a particular 2-D
plane as shown by the dashed line, at the p+ i junction.
Half of the electrons in the valence band in that plane
move to the right in the þkz direction, as indicated in the
hemisphere in the k-space. Since there are negligible
electrons in the conduction band in that plane, the current
there must be carried by electrons in the valence band. But
which of these right-going electrons are allowed to tunnel
through the gap? In the absence of phonon scattering,
tunneling is an elastic process. This enforces the energy
requirement

Ep
v+

!h2

2m*v
k2

xpþk2
ypþk2

zp

$ %
¼En

cþ
!h2

2m*c
k2

xnþk2
ynþk2

zn

$ %
(3)

with the additional requirement that the lateral momen-
tum be conserved. To simplify the analytical treatment,
and in preparation for 2-D crystals, we further assume that
the bands are symmetric, i.e., m*c , m*v ¼ 2m*R. The energy
and momentum conservation requirements thus lead to
the relation

2k2
? þ k2

zp ¼
4m*RqV

!h2 + k2
zn (4)

where k2
? ¼ k2

xp þ k2
yp. Let us define k2

max ¼ 4m*RqV=!h2.
Since there is an electric field in the z-direction, mo-
mentum in that direction will not be conserved. For the

Fig. 4. Interband tunneling in a reverse-biased p + i + n junction

diode. Most TFETs use the reverse-bias Zener tunneling as the

mechanism of current conduction in their ON-states. The current may

be calculated by integrating over the k-states at the injection point as

outlined in the text.
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electron to emerge on the right (n-)side, kzn must be non-
zero, and thus k2

zn - 0, which implies

2k2
? þ k2

zp . k2
max: (5)

The above condition defines a restricted volume "T of
the k-space hemisphere for electron states that are allowed
to tunnel. We are now in a position to evaluate the tun-
neling current for 3-D semiconductor p+ i+ n junctions.
In the expression for the tunneling current [see (1)], the
group velocity term is that of the valence band k-state
vgðkÞ ¼ !hkz=m*v . We skip the p- or n-subscripts, since it is
clear that the electrons tunnel from the valence band. The
expression for the tunneling current is then

IT¼q
gsgv

Lz

X

ðkx;ky;kzÞ2"T

!hkz

m*v
ðfv + fcÞT0 exp + !hk2

?
2m*v E

" #
: (6)

The sum over k-states is converted into an integral via
the recipe

P
kð. . .Þ! LxLyLz=ð2!Þ3 '

R
dkxdkydkzð. . .Þ.

To evaluate the tunneling current in the restricted volume,
we use spherical coordinates ðkx; ky; kzÞ ¼ ðk sin $ cos&;
k sin $ sin&; k cos $Þ to obtain the restricted k-space vol-
ume k2 . k2

max=ð1þ sin2 $Þ. This relation is representa-
tive of the ‘‘filtering’’ brought about by the requirements of
energy and momentum conservation. Electrons incident
normal to the junction have no transverse momentum. For
them $ ¼ 0, and they are allowed to tunnel. The number of
electron states allowed to tunnel reduces as their trans-
verse directed momentum increases. The current carried
by these states with transverse momentum is further
damped by the exp½+E?=E# factor, leading to further fil-
tering and momentum collimation.

To evaluate the current, the integral in k-space should
be evaluated. To simplify the evaluation in 3-D without
losing much accuracy, we assume fv + fc , 1 for the energy
window of current-carrying electrons. This relation is exact
at 0 K, and remains an excellent approximation even at
room temperature. The tunneling current density is then
given by

J3-D
T ¼ I3-D

T

LxLy

¼ q
gsgv!h

ð2!Þ3m*v
T0 '

Z2!

&¼0

d&

Z!
2

$¼0

d$ sin $ cos $

'
Z
kmaxffiffiffiffiffiffiffiffiffi
1þsin2 $
p

k¼0

dk / k3 exp + !h2k2

2m*v E
sin2 $

" #
(7)

where the k-space integral is evaluated over the restricted
volume "T . The units are in current per unit area (A/cm2),
as it should be. The integral yields an analytical result.
Using the symmetric band approximation m*c , m*v ¼ 2m*R,
we get

J3-D
T ¼

q2gsgv

ffiffiffiffiffiffiffiffi
2m*R

p
F

8!2!h2 ffiffiffiffiffi
Eg

p T0 qV + 2E 1+ exp + qV

2E

& '( )" #
(8)

where the symbols have been defined earlier. For ex-
tremely small reverse bias voltages qV 0 2E, the tunneling
current varies as J3-D

T ! V2 to leading order. For larger
voltages when qV 1 2E, J3-D

T ! V and this is the condition
used in most TFETs. The expression for the tunneling
current shows the dependences on various band structure
and junction parameters explicitly.

The calculated interband tunneling current densities
for 3-D semiconductors are shown in Fig. 5(left) for a
reverse bias voltage of 0.3 V. As is evident, the smaller
bandgaps of InSb and InAs favor high tunneling current
densities that approach !106 A/cm2. If we assume that
the body thickness of the p+ i+ n junction is 10 nm, the
effective current per unit width is also shown in the right
axis of Fig. 5(left). However, this value of the current does
not account for the increase in the bandgap due to
quantization, which we address shortly. We now apply the
same technique for calculating tunneling currents in 2-D
crystal semiconductors.

Fig. 5. Calculated interband tunneling current densities in a few 3-D

and 2-D semiconductor crystal p + n junctions. The left figure shows

the calculated tunneling current densities in reverse-biased p + n

homojunctions. If the current per unit area is assumed constant for

a layer thickness of 10 nm, then the effective current per unit width

is shown in the right axis of the left plot. This estimation neglects

quantization. The right figure shows the calculated tunneling

current per unit widths of some 2-D crystals. The transition metal

dichalcogenides have low current densities due to high bandgaps,

whereas 2-D graphene has the highest current density.

Two-dimensional tunneling currents for two small bandgap

and effective masses are also shown.
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Two-dimensional semiconductors: The same recipe is
repeated for 2-D crystals. If the transport is along the
x-direction, the transverse momentum component consists
of one component ky, and the restricted k-space volume is
given by 2k2

y þ k2
x . k2

max. The interband tunneling
current per unit width in a 2-D crystal p+ i+ n junction
then evaluates to

J2-D
T ¼ qgsgv

ffiffiffiffiffiffiffiffiffiffiffi
2m*RE

p

2!2!h2 T0 '

"

ðqV + EÞ
ffiffiffi
!
p

Erf

ffiffiffiffiffi
qV

2E

r" #

þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
qV / 2E

q
exp + qV

2E

" ##

(9)

where Erf½. . .# stands for the error function, and E ¼
q!hF=2

ffiffiffiffiffiffiffiffiffiffiffiffiffi
2m*REg

p
as before. For extremely small reverse bias

voltages qV 0 2E, the tunneling current varies as J2-D
T !

V3=2 to leading order. For larger voltages when qV 1 2E,
Erf½. . .#! 1, and we get a linear dependence of the tun-
neling current on the reverse-bias voltage J2-D

T ,
ðq2gsgv

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2!m*RE

p
=2!2!h2ÞT0V . We note that the units are

in current per unit width (mA/%m), as should be the case
for 2-D crystals. In quasi-2-D systems, multiple subbands
may be involved in transport. Then, we sum the current
from each subband with the respective band parameters.

For the special case of 2-D graphene, the band struc-
ture is conical, and the bandgap is zero. The interband
tunneling probability for a graphene in-plane p+ n junc-
tion is given by TðE; $Þ ¼ exp½+!E2 sin2 $=q!hvFF#, where
$ is the angle between the incident electron momentum
and the junction electric field F, and E is the electron
energy [70]. The requirement of lateral momentum con-
servation effectively opens a bandgap proportional to the
lateral momentum of electrons. The doping in the p- and
n-graphene regions are such that the Fermi level to Dirac
point energies are EFp and EFn, respectively, and the junc-
tion ‘‘depletion width’’ is Lpn. The reverse-bias tunneling
current in the 2-D graphene p+ n junction is then given
by [71]

JGr
T ¼

q2V

!2!h

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
EFp þ EFn + qV

!hvFLpn

s

: (10)

Let us assume that the applied reverse bias voltage is
small compared to the degeneracy energies, and approx-
imate the junction field by qF ! ðEFp þ EFnÞ=Lpn. Then, we
obtain an approximate expression for the interband
reverse-bias tunneling current per unit width in 2-D
graphene p+ n junctions to be JGr

T ! ðq2 ffiffiffiffiffi
qF
p

=!2!h
ffiffiffiffiffiffiffi
!hvF
p

ÞV .
The interband tunneling current densities of various

2-D crystals are plotted in Fig. 5(right). The material con-
stants (bandgaps and effective masses) are obtained from

[39]. The values of tunneling currents for transition-metal
dichalcogenides are low owing to their large bandgaps.
For example, the current density approaches !0.1 %A/%m
for MoTe2 at a high field of 4 MV/cm. The tunneling
current density of 2-D graphene is the highest (!several
mA/%m), but it lacks a bandgap. As new 2-D crystals come
to the fore, it is desirable to have smaller bandgaps for
boosting the current, as indicated by the two curves
corresponding to hypothetical 2-D crystals with bandgaps
of 0.5 and 1.0 eV, respectively. Such small-bandgap
materials could be intrinsic 2-D crystals, or derived from
interaction-induced bandgap of Dirac-cone surface states
in thin topological insulator materials [29]. Another pos-
sibility is in bilayer graphene, where breaking the layer
symmetry by vertical electric fields opens a small bandgap
[72]–[74]. It is clear that at this stage the currently
available TMD family of 2-D crystal semiconductors can
enable tunneling transistors. But for in-plane tunneling
geometries, the current densities will be low. This feature
can be effectively addressed by either narrower gap 2-D
crystal semiconductors, or by interlayer tunneling device
geometries. We address interlayer tunneling devices in
Section V, after discussing the treatment of tunneling in
1-D semiconductors.

One-dimensional semiconductors: For 1-D tunneling, we
obtain an exact analytical result even when we include the
Fermi–Dirac occupation factors in the source and the grain
sides of the p+ i+ n junction. In the ideal 1-D case,
E? ¼ 0 since electrons cannot have transverse momen-
tum. When a voltage V is applied, fv ¼ 1=ð1þ exp½ðE+
qVÞ=kT#Þ and fc ¼ 1=ð1þ exp½E=kT#Þ are the occupation
functions of the source and drain sides. The interband
tunneling current is evaluated by the same prescription
followed for the 3-D and 2-D cases to be [75]

I1-D
T ¼ q2

h
gsgvT0 '

kT

q
ln

1

2
1þ cosh

qV

kT

& '( )" #
: (11)

Note the explicit appearance of the Landauer conduc-
tance in the expression. This expression for tunneling
current holds for quasi-1-D semiconductors such as semi-
conducting nanowires, carbon nanotubes, or semiconduct-
ing graphene nanoribbons (GNRs). The appropriate WKB
tunneling probability should be used. For nanowires made
from conventional 3-D semiconductor crystals, the prob-
ability is T0 ¼ exp½+4

ffiffiffiffiffiffiffiffi
2m*R

p
E3=2

g =3q!hF# as before. For
CNTs and GNRs, the unconventional band structure is
captured in a modified WKB tunneling probability, which
is given by T0 ¼ exp½+!E2

g=4q!hvFF#, where vF is the Fermi
velocity [75]. If there are multiple subbands involved in
the transport, we add the currents from each subband with
the right bandgap.

Fig. 6 shows the effect of quantization on bandgaps
of 3-D crystals on the left, and the calculated 1-D
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semiconductor tunneling current densities on the right.
The effect of quantization is to increase the bandgap, in
turn reducing the interband tunneling current. The right
figure shows the current densities of ‘‘1-D’’ semiconductors
such as graphene nanoribbons (GNRs) and Ge and InSb
nanowires. The tunneling current densities of GNRs are
the highest of all materials calculated that possess band-
gaps. The effect of quantization on Ge and InSb nanowire
1-D p+ n junction structures is evident from the preci-
pitous drop in the interband tunneling currents in them.

The increase in the bandgap for both 2-D and 1-D
confinement is calculated using a simple particle-in-a-box
model with the band-edge effective masses of the 3-D
semiconductors. The values are meant to be representative
of the trends; more accurate electronic structure calcula-
tions should be used for direct validation. However, it is
clear that as 3-D crystals are scaled in thickness (for mak-
ing them 2-D) or in diameter (for making them 1-D), the
corresponding increase in bandgap is rapid. Large bandgap
semiconductors are more robust to quantization since
they possess heavier effective masses. This is a dilemma
for the scaling of tunneling transistors. As shown in the
shaded region in the left of Fig. 6, 2-D crystals are
typically of !nanometer thicknesses and span bandgaps
from 0 eV (graphene) to several eVs (BN). This regime
remains inaccessible to 3-D crystal semiconductors due to
quantization. It is possible to access this regime with 3-D
semiconductors only if the band structure allows for
extreme anisotropies [76], but such highly desirable
properties are yet to be demonstrated in 3-D crystal
semiconductors.

IV. TUNNELING TRANSISTORS WITH
3-D CRYSTALS

The unified view of tunneling transport discussed in the
last section provides a framework for comparative studies
of the effect of dimensionality on tunneling transistors.
Based on the discussion of transport in two-terminal tun-
nel junctions, we now discuss the electrostatics and device
embodiments of the corresponding three-terminal TFETs.

In a TFET, a gate terminal electrostatically controls the
energy-band alignment of the p+ n junction, as indicated
in Fig. 7. In the off-state of the device, electrons in the
valence band of the source are energetically forbidden to
tunnel to the drain since the channel length exponentially
damps the direct source-to-drain tunneling probability. To
turn the device on, the gate pushes the channel bands to
align the conduction band edge of the channel region with
the valence band of the source. Electrons can now tunnel
through the tunneling barrier, which is much smaller than
the off-state. The goal therefore is to allow a large current
to flow in the on-state, while cutting the current off as
much as possible in the off-state.

The performance requirements of a TFET are indicated
schematically in Fig. 7. Compared to a MOSFET, the
steeper SS slope of a TFET enables a higher on-current at a
smaller gate overdrive voltage. This feature is expected to
enable scaling of the voltage supply VDD to lower values
while maintaining a substantial on/off ratio. The issues of
electrostatics and transport have been discussed at length
in various articles [12], [69]. We refer the reader to these
articles for detailed historical perspectives and further
technical details. Here, we qualitatively discuss a few em-
bodiments and issues with TFETs realized with 3-D crystal
semiconductors. The discussion naturally motivates the
case for 2-D crystal realizations of the device.

The electric field lines emanating from the gate metal
of a TFET need to access the p+ n junction. Therein lies a
dilemma for TFETs based on 3-D crystal semiconductors.
As shown in Fig. 8, if the tunneling current flows in the
lateral direction and the gate field is vertical, the channel
needs to be thinned down to exercise substantial electro-
static control over the entire junction thickness. As the

Fig. 6. The effect of quantization on the bandgap of some 3-D crystals.

The plot is generated assuming a particle-in-a-box quantization,

and is meant to illustrate the approximate trends. The effect of

quantization is the most severe for narrow bandgap semicondctors.

The increase in bandgap will reduce interband tunneling currents.

The right figure shows the 1-D tunneling currents for GNRs, and InSb

and Ge. Note the large reduction of current due to quantization effects

in Ge and especially in InSb. A major advantage of 2-D crystals is

their inherently thin nature. In addition, their large effective masses

make them robust to quantization effects when rendered 1-D.

Fig. 7. TFET operation and requirements. The left figure shows the

OFF-state energy-band diagram of the TFET along the tunneling

direction. The right figure shows the ON-state. The channel band is

controlled by the gate. TFETs are expected to lower the supply voltage

VDD since a steeper SS swing leads to a higher ON-current at a smaller

voltage, as shown in the middle.
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channel thickness is scaled down, quantum confinement
increases the bandgap, and thus the interband tunneling
current reduces (see Fig. 6). A 2-D crystal does not suffer
from such a problem, and thus offers a way to fight quan-
tization effects. In addition, it offers a solution to surface
state related trap states, and simpler integration of double-
gate geometries, as indicated in Fig. 8.

A number of TFETs with subthreshold slopes less than
the SS limit of 60 mV/decade have been demonstrated,
proving the feasibility of the concept. Such devices have
been made with 3-D crystal semiconductors (Si, Ge, etc.)
as well as with carbon nanotubes [77]–[80]. However, for
most realizations, the on-state current falls below the
!1 mA/%m range necessary for high-performance ope-
ration. Low on-current TFETs can enable various new
applications where performance (speed) requirements are
not as critical as the requirement of low power consump-
tion. For high-performance TFETs, various approaches are
being pursued to increase the on-current. These ap-
proaches involve using heterojunctions that have staggered
or broken-gap band alignments, or through changes in the
device topology. An approach based on the device topology
is indicated in Fig. 8.

The shaded regions in Fig. 8 indicate the location of
current flow. To increase the tunneling current per unit
width, it is necessary to increase the net area of tunneling
current flow. The vertical geometries shown in Fig. 8 allow
this change [81], [82]. The gate field effect is in the same
direction as the tunneling current flow in such devices.
The tunneling current follows a nonlinear path (shaped
like an ‘‘S’’) laterally from the source, vertically into the
drain, and then out laterally into the drain. The device
geometry requires careful processing. For this geometry,
two layers of 2-D crystals, one doped p-type and the other

n-type, promise efficient vertical scaling and electrostatic
control as shown in the figure. It may also enable a sim-
plification of the processing requirements.

V. TUNNELING TRANSISTORS WITH
2-D CRYSTALS

The 2-D crystal realizations of TFETs discussed here in-
volve in-plane tunneling for the lateral device and interlayer
tunneling in the vertical TFET. We discuss them in greater
detail here. Note that due to the relatively early phase of
material development, we estimate and project the perfor-
mance advantages in cases where experimental results are
not available yet.

A. In-Plane Tunneling: 2-D Crystal Semiconductors
The in-plane interband tunneling currents calculated

in Fig. 5 show that smaller bandgap semiconductor 2-D
crystals are required for boosting the on-state current of
the devices. Low-power TFETs are realizable with the
transition-metal dichalcogenide semiconductors. The ef-
fective masses of the conduction and valence band edges of
TMD 2-D crystals have been calculated to be rather sym-
metric. For example, the electron effective mass of MoS2 is
!0.57, and the hole effective mass is !0.66 [39]. The
symmetry in the band structure is expected to lead to
symmetric performance of nTFETs and pTFETs, which
would be essential for complementary logic circuits.

It has been found that multilayer versions of TMD 2-D
crystals have smaller bandgaps than the single-layer
counterpart, and are generally of indirect bandgap nature
[40], [41]. This is also true when one considers single-layer
graphene (direct bandgap) and graphite (which is a semi-
metal). Furthermore, it has recently been reported that

Fig. 8. Schematic representation of various topologies of TFETs. The top row shows TFETs where the tunneling current flows laterally in the

pþ + n+ + nþ junction. The circles are indications of the region in space where most of the interband tunneling current flows. Since the gate is

on the top, parts of the junction farther away from it are not effectively gated in the top left TFET. The top middle geometry is the same as the left,

but with a thinner channel for more uniform electrostatic gate control of tunneling current. The right figure on the top row is the 2-D crystal

realization of the lateral TFET. As the channel thickness is reduced in 3-D semiconductors, quantum confinement increases the bandgap and

reduces the tunneling current. This is avoided in 2-D crystals. To increase the net current, vertical TFETs are being considered. The bottom row

indicates some realizations of TFETs in which the tunneling current flows vertically. The left figure shows a side-gate geometry, and the middle

figure is a geometry in which the current flow is not over a ‘‘line,’’ but an ‘‘area,’’ as shown by the shaded ellipse. The right figure shows the

realization of a vertical double-gate TFET with pþ and nþ 2-D crystal layers. It highlights the electrostatic advantage and simplicity.
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carrier inversion can be achieved in multilayer TMD
crystals by the field effect. A hole channel was observed in
a nominally n-type layered semiconductor [64]. Consider a
few-layer stack of 2-D TMD crystals. By using two gates, it
is possible to create an electron channel at one interface
and a hole channel in the other. These channels can be
placed several nanometers apart by controlling the
number of layers. The wave function overlap between
these states is small at no bias owing to the high effective
mass for carrier motion between planes. The geometry
then allows for a TFET similar to the vertical structure
shown in Fig. 8, but without the need to chemically dope
the individual layers. A major challenge in such structures
is in the formation of ohmic contacts to the individual
layers. Note that such a device has also been recently
proposed for thin layer Si [83]. The realization with
multilayer version of 2-D crystals can be an alternative
approach that can leverage the robustness against quan-
tization effects, and relative insensitivity to surface and
interface trap effects.

B. In-Plane Tunneling: 2-D Graphene
As shown in Fig. 5, the on-state interband tunneling

current density in 2-D graphene is the highest due to the
absence of a bandgap. For the same reason, it is difficult to
obtain the off-state condition using monolayer 2-D
graphene. Field-tunable bandgaps in bilayer graphene
have been proposed as a possible approach to achieving
on/off ratios in TFETs [84]. There have also been recent
reports of the observation of negative differential resis-

tance in monolayer 2-D graphene FETs [85]. The proposed
mechanism responsible for such behavior relies entirely on
gate electrostatics and the unique band structure with the
zero-gap nature of 2-D graphene. More experimental work
and understanding of NDR mechanisms in 2-D graphene
can lead to useful device applications in the analog arena to
complement TFETs. To decrease the off-state current for
in-plane tunneling devices, it is necessary to create
bandgaps in graphene. One approach is to use CNTs or
lithographically patterned GNRs, which is discussed next.

C. In-Plane Tunneling: CNTs and GNRs
One of the early reports of sub-60-mV/decade SS slope

TFET behavior was observed in semiconducting carbon
nanotubes at room temperature [80]. Analysis of the de-
vice performance for CNT TFETs [86] and GNR TFETs
[87] shows that they are attractive for desirable on-
currents, on/off ratios, and sub-60-mV/decade SS slopes.
CNTs do not have edge states, and are the most attractive
from a performance viewpoint. Bandgap control, chemical
doping, and patterned assembly on large wafers still re-
main challenging for CNTs, though rapid progress is being
made [88].

Their close cousins, GNRs are also highly attractive
candidates for TFETs. For example, Fig. 9 shows the device
structure, energy band diagrams, and the projected device
characteristics of complementary GNR TFETs. The inclu-
sion of parasitic elements to the intrinsic model still
maintains a high performance. GNRs can be integrated
on planar surfaces, and can be made lithographically in

Fig. 9. A proposed GNR TFET geometry, energy band diagram, and the calculated transistor transfer curves. The device structure consists of

a GNR p + n junction that is gated through an insulator from the top gate. The energy band diagrams are for a 20-nm-long channel device

with a 5-nm-wide GNR. The energy band diagrams indicate the OFF- and ON-states of the device, where the channel potential is moved with

the gate voltage. The resulting transfer curve shows a high ON-current, a low OFF-current, and a low SS slope, below the 60-mV/decade limit.

Though the calculations are for an ideal case, they represent the attractiveness of GNRs as possible candidates for TFETs. The figure has

been adapted from [87].
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parallel arrays to boost the net current in a realistic TFET
device geometry. The available dangling bonds at the edges
can be used to chemically dope them; initial reports indi-
cate this possibility [89]. The major challenges at this stage
for the realization of GNR TFETs lie in the narrowness of
the GNR widths necessary to avail high-performance
levels. The energy bandgap of a semiconducting GNR of
width W is Eg ! 1:4=W eV, where W is in nanometers.
Based on theoretical estimates, GNRs of widths . 10 nm
are necessary. The line-edge roughness that might result
from process variations for the thinnest GNRs can degrade
the performance of GNR TFETs, as has been analyzed in
[90]. On the other hand, advances in process control in the
fabrication of thin films in Si FinFETs can be effectively
leveraged for fabrication of wafer-scale GNRs. A number of
variants of the GNR TFETs have also been proposed to
improve the device performance [91]–[95].

The symmetry of the band structure of CNTs and GNRs
is a major advantage that allows for the realization of
nTFETs and pTFETs on equal footing. Combined with the
scaling advantages that stem from their atomically thin
body nature, they are highly desirable for nanoscale
TFETs. The approach to high-performance TFETs using
3-D crystal semiconductors is taking the path toward
materials with successively smaller bandgaps to increase
the on-current. The approach with graphene, CNTs, and
GNRs is from the other extreme, where we start from zero
bandgap and very high on-currents, and now need to open
bandgaps controllably to lower the off-current. While this
is an attractive and complementary approach, 2-D crystals
also offer the possibility of interlayer tunneling transistors,
which we discuss now.

D. Interlayer Tunneling Devices, BiSFETs,
and SymFETs

Electron tunneling out of the plane of a 2-D crystal is
under intense scrutiny at this time [96]. The electronic
band structure of the 2-D crystal is defined in the plane but
not out of it. The conventional approach to tunneling
calculations requires the knowledge of band parameters
such as the effective mass of the evanescent band structure
in the direction of the tunneling. Since this feature is not
well defined for 2-D crystals, it is more feasible to use
scattering rate formalisms for quantitative calculations of
interlayer tunneling. The Bardeen transfer-Hamiltonian
approach, used in scanning tunneling microscopy [97],
[98] and in superconducting Josephson junctions [99]
allows such evaluation. We do not derive the quantitative
results here, but refer the reader to recent articles that
approach the subject of interlayer tunneling using the
Bardeen method.

A prototype interlayer-tunneling device is a graphene–
insulator–graphene (GIG) junction. In a recent work
[100], the interlayer tunneling current in such a GIG
junction was explicitly evaluated using the Bardeen meth-
od. The predicted I–V characteristics are rather remark-

able, and highlight the strong role of the symmetry of the
band structure of graphene.

Fig. 10 shows the energy band alignments and pro-
jected device performance of a GIG interlayer tunnel
junction device. The two graphene layers are ‘‘indepen-
dent’’ in the sense that they do not form a bilayer, and they
are doped p- and n-type as captured by their Fermi level
degeneracies. Ohmic contacts are made to the two layers
independently. A voltage is applied across the junction.
When the Dirac points of the two layers are misaligned, a
small interlayer tunneling current flows. The circles indi-
cated on the Dirac cones in Fig. 10(a) and (b) show the
states that participate in the interlayer tunneling process.
Electrons that have energy halfway between the Dirac
points carry the current. This is because transverse mo-
mentum conservation requires the radii of the iso-energy
circles to be the same in both layers.

However, at the particular voltage when the Dirac
points align, as shown in Fig. 10(c), electrons at all ener-
gies are now allowed to tunnel, leading to a large spike in
the current. This is schematically shown in Fig. 10(d) as a
Dirac-delta function. A quantitative evaluation leads to
broadening, but with a very large NDR effect. Note that
the peak would be much smaller if the band structure was
not symmetric. Since then the requirement of transverse
momentum conservation would restrict the current to flow
at a particular energy, and a collective tunneling condition
as in Fig. 10(c) cannot be achieved. The large tunneling
current peak is a direct consequence of the symmetric
band structure of 2-D graphene.

Fig. 10. Band alignments of GIG interlayer tunnel junctions under

various bias conditions from [100]. The graphene layers are

doped to form a p + n junction. In (a) and (b), the symmetry of

the band structure restricts electrons at only one energy to carry

interlayer current due to the requirement of transverse momentum

conservation. A special case occurs when the Dirac points align:

electrons at all energies are now allowed to tunnel, leading to

a spike in the current, as shown schematically in (d).
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The GIG p+ n junction structure can be connected to
gates to realize an interlayer-tunneling transistor. Such a
device, called the symmetric-FET (SymFET) has been re-
cently proposed [55]. In addition to performing logic ope-
rations, the inherently fast tunneling feature and large
NDR promises to also enable analog applications such as
high-harmonic generation, and high-speed oscillator de-
sign. Note that the SymFET device structure is similar to
gated RTD structures [101] realized in 3-D semiconductor
heterostructures, but takes advantage of the band structure
symmetry of graphene to deliver a stronger NDR behavior.
The first experimental report of such a structure did not
show NDR, but exhibited TFET-like behavior with a few
orders on/off ratio at room temperature. The structure
used consisted of graphene–BN–graphene and graphene–
MoS2–graphene heterostructures [53].

The SymFET structure is based on single-particle
tunneling. Realistic fabrication of the device calls for
rotational alignment of the graphene layers. By adjusting
the interlayer distance and the carrier densities, the
Coulombic forces between the electrons and the holes in
the two graphene layers can be made strong enough to form
excitonic quasi-particles. Under suitable bias conditions,
the interlayer current flow can take a collective many-body
form triggered by a Bose–Einstein condensation of the
excitons. The condensate can boost the interlayer current
significantly. The proposed device, called the bilayer
pseudospin FET (BiSFET) is insensitive to the rotational
alignment of the two graphene layers. It has been shown
that if the BISFET can be realized, it can perform digital
logic by consuming many orders of magnitude lower energy
than conventional MOSFETs [54]. The SymFET and the
BiSFET are fundamentally new types of devices with no
direct analogs to conventional semiconductors. This is
because of their unique band structures and their 2-D

crystal nature. Their discussion is an ideal point to end this
review paper and to wrap up with a few concluding
remarks.

VI. FUTURE PERSPECTIVES AND
CONCLUSION

The emergence of 2-D crystal materials has marked a new
phase for the development of semiconductor devices. It
may rank at the same level as the origin and proliferation
of heterostructures in 3-D semiconductors. The materials
and the resulting devices are at their infancy, as are many
device ideas based on tunneling that are at proposal stages.
But the novelty the family of 2-D crystal has brought to the
field becomes evident by the string of new device concepts
based on tunneling. The addition of graphene with its
unique band structure, BN as a 2-D crystal insulator, and
transition-metal dichalcogenides with material properties
ranging from semiconducting to metallic and super-
conducting casts a much wider net than has been possible
with conventional materials. The possibility of integration
of diverse material properties in 2-D crystal heterostruc-
tures has breathed new life into existing paradigms of
electronic device technologies. This is an exciting time
when creative ideas are needed to exploit the power of this
new material system. Though it is impossible to predict the
exact path forward, we can be sure that electronic devices
that go far beyond the current state of the art will result
from the new material family. h
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