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The single particle tunneling in a vertical stack consisting of monolayers of two-dimensional
semiconductors is studied theoretically, and its application to a novel Two-dimensional
Heterojunction Interlayer Tunneling Field Effect Transistor (Thin-TFET) is proposed and
described. The tunneling current is calculated by using a formalism based on the Bardeen’s transfer
Hamiltonian, and including a semi-classical treatment of scattering and energy broadening effects.
The misalignment between the two 2D materials is also studied and found to influence the
magnitude of the tunneling current but have a modest impact on its gate voltage dependence. Our
simulation results suggest that the Thin-TFETs can achieve very steep subthreshold swing, whose
lower limit is ultimately set by the band tails in the energy gaps of the 2D materials produced by
energy broadening. The Thin-TFET is thus very promising as a low voltage, low energy solid state
electronic switch. © 2014 AIP Publishing LLC. [http://dx.doi.org/10.1063/1.4866076]

. INTRODUCTION

The electronic integrated circuits are the hardware back-
bone of today’s information society, and the power dissipa-
tion has recently become the greatest challenge, affecting the
lifetime of existing portable equipments, the sustainability of
large and growing in number data centers, and the feasibility
of energy autonomous systems for ambience intelligence, '
and of sensor networks for implanted monitoring and actua-
tion medical devices.” While the scaling of the supply volt-
age, Vpp, is recognized as the most effective measure to
reduce switching power in digital circuits, the performance
loss and increased device to device variability are a serious
hindrance to the Vp scaling down to 0.5V or below.

The voltage scalability of VLSI systems may be signifi-
cantly improved by resorting to innovations in the transistor
technology and, in this regard, the ITRS has singled out
Tunnel field effect transistors (FETs) as the most promising
transistors to reduce the sub-threshold swing (SS) below the
60 mV/dec limit of MOSFETs (at room temperature), and,
thus, to enable a further Vpp s.cali11g.4’5 Several device archi-
tectures and materials are being investigated to develop
Tunnel FETs offering both an attractive on current and a
small SS, including III-V based transistors, possibly employ-
ing staggered or broken bandgap heterojunctions,®™ or strain
engineering.'® Even if encouraging experimental results
have been reported for the on-current in III-V Tunnel FETs,
to achieve a sub 60 mV/dec subthreshold swing is still a real
challenge in these devices, probably due to the detrimental
effects of interface states.®!'"1? Therefore, as of today, the
investigation of new material systems and innovative device
architectures for high performance Tunnel FETs is a timely
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research field in both the applied physics and the electron de-
vice community.

In such a contest, two-dimensional (2D) crystals attract
increasingly more attention primarily due to their scalability,
step-like density of states, and absence of broken bonds at
interface. They can be stacked to form a new class of tunnel-
ing transistors based on an interlayer tunneling occurring in
the direction normal to the plane of the 2D materials. In fact,
tunneling and resonant tunneling devices have been recently
proposed,'® as well as experimentally demonstrated for
graphene-based transistors.'*'> Furthermore, monolayers of
group-VIB transition metal dichalcogenides MX, (M = Mo,
W; X =S85, Se, Te) have recently attracted remarkable atten-
tion for their electronic and optical properties.'®!’
Monolayers of transition-metal dichalcogenides (TMDs)
have a bandgap varying from almost zero to 2eV with a
sub-nanometer thickness, such that these materials can be
considered approximately as two-dimensional crystals.'®
The sub-nanometer thickness of TMDs can provide excellent
electrostatic control in a vertically stacked heterojunction.
Furthermore, the 2D nature of such materials make them
essentially immune to the energy bandgap increase produced
by the vertical quantization when conventional 3D semicon-
ductors are thinned to a nanoscale thickness and, thus,
immune to the corresponding degradation of the tunneling
current density.'” Moreover, the lack of dangling bonds at
the surface of TMDs may allow for the fabrication of mate-
rial stacks with low densities of interface defects.'® which is
another potential advantage of TMDs materials for Tunnel
FETs applications.

In this paper, we propose a two-dimensional heterojunc-
tion interlayer tunneling field effect transistor (Thin-TFET)
based on 2D semiconductors and develop a transport model
based on the transfer-Hamiltonian method to describe the
current voltage characteristics and discuss, in particular, the
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subthreshold swing. In Sec. II, we first present the device
concept and illustrate examples of the vertical electrostatic
control, then we develop a formalism to calculate the tunnel-
ing current. Upon realizing that the subthreshold swing of
the Thin-TFET is ultimately determined by the energy
broadening, in Sec. II C, we show how this important physi-
cal factor has been included in our calculations. In Sec. II D,
we address the effect of a possible misalignment between the
two 2D semiconductor layers, while in Sec. IIE, we derive
some approximated, analytical expressions for the tunneling
current density, which are useful to gain insight in the tran-
sistor operation and to guide the device design. In Sec. III,
we present the results of numerically calculated current
voltage characteristics for the Thin-TFET, and, finally, in
Sec. IV, we draw some concluding remarks about the model-
ing approach developed in the paper and about the design
perspectives for the Thin-TFET.

Il. MODELING OF THE TUNNELING TRANSISTOR
A. Device concept and electrostatics

The device structure and the corresponding band
diagram are sketched in Fig. 1, where the 2D materials are
assumed to be semiconductors with sizable energy bandgap,
for example, TMD semiconductors without losing general-
ity.!”° Both the top 2D and the bottom 2D material is a
monolayer, and the thickness of the 2D layers is neglected in
the modeling of the electrostatics.

The working principle of the tunneling transistor
sketched in Fig. 1(a) can be explained as follows. When the
conduction band edge E.r of the top 2D layer is higher than
the valence band edge Eyp of the bottom 2D layer (see
Fig. 2(a)), there are no states in the top layer to which the
electrons of the bottom layer can tunnel into. This corre-
sponds to the off state of the device. When Ec7 is pulled
below Eyp (see Fig. 2(b)), a tunneling window is formed,
and, consequently, an interlayer tunneling can flow from the
bottom to the top 2D material. The crossing and uncrossing
between the top layer conduction band and the bottom layer
valence band are governed by the gate voltages, and they are
described by the electrostatics of the device.

To calculate the band alignment along the vertical direc-
tion of the intrinsic device in Fig. 1, we write the Gauss law
linking the sheet charge in the 2D materials to the electric
fields in the surrounding insulating layers, which leads to

CroxVrox — CioxViox = e(pr — nr + Np),

(D
CgoxVsox + CroxViox = e(pg — ng + Na),

where Cr( p)ox 1s the capacitance per unit area of top oxide
(interlayer, back oxide) and Vry( pjox is the potential drop
across top oxide (interlayer, back oxide). The potential drop
across the oxides can be written in terms of the external vol-
tages Vg, Vg, Vps, and of the energy e, r = Ecr — Epr
and e, ; = Epp — Eyp defined in Fig. 1(b) as

eVrox = eVrg + e, — eVps + topr — Purs
eVpox = eV — e, p + Ecg + 1app + Pup, ()

eViox = eVps —ed,p — ed,r + Ecp + Yapp — Xan1>
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FIG. 1. (a) Schematic device structure for the Thin-TFET, where V¢, Vg,
and Vg are the top gate, back gate, and drain to source voltages; (b) sketch
of the band diagram, where ®,,, ®) 5 are the work-functions and E y/7,
Er ymp the Fermi levels of the metal gates, while y2p 7, x2p 5 are the electron
affinities, Exr, Erp the Fermi levels, Ecr, Ecp the conduction band edges,
and Ey7, Eyp the valence band edges respectively in the top and bottom 2D
layer. Vrox, Viox and Vpox are the potential drops respectively across the
top oxide, interlayer and back oxide.

where Epr, Epp are fermi levels of majority carriers in the
top and bottom layer. ny, pr are the electron and hole con-
centration in the top layer, ng, pp the concentrations in bot-
tom layer, yop 1, %2pp are the electron affinities of the 2D
materials, CDT,'CDB the workfunctions of the top and back
gate, and Egp is the energy gap in the bottom layer. Eq. (2)
implicitly assumes that the majority carriers of the two 2D
materials are at thermodynamic equilibrium with their Fermi
levels, with the split of the Fermi levels set by the external
voltages (i.e., Exp — Epr=¢Vpy), and the electrostatic poten-
tial essentially constant in the 2D layers.

Since in our numerical calculations, we shall employ a
parabolic effective mass approximation for the energy dis-
persion of the 2D materials, as discussed more thoroughly in
Sec. III, the carrier densities can be readily expressed as an
analytic function of e¢, r and e¢l,7321

n(P) _ gvmci’:;)kBTln |:€Xp (_ qqsn,]:B(jjp,B)) + 1:| ’ 3)

where g, is the valley degeneracy.
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When Egs. (2) and (3) are inserted in Eq. (1), we obtain
two algebraic equations for ¢, ; and ¢, 5 that can be solved
numerically and describe the electrostatics in a one dimen-
sional section of the device.

B. Transport model

In this section, we develop a formalism to calculate the
tunneling current based on the transfer-Hamiltonian
method,**** as also revisited recently for resonant tunneling
in graphene transistors.'*'**> We start by writing the single
particle elastic tunneling current as

I g0 78S M k) Po(Es k) — Er (k) (s —fr) ()

kr kg

where e is the elementary charge, kg, ki are the
wave-vectors, respectively, in the bottom and top 2D mate-
rial, Ep(kp) and Er(kr) denote the corresponding energies,
fp and fr are the Fermi occupation functions in the bottom
and top layer (depending respectively on Ezz and Egr, see
Fig. 1), and g, is the valley degeneracy. The matrix element
M(kr,kp) expresses the transfer of electrons between the
two 2D layers is given by'*

M(kr, kp) = Ler Az (r,2) Use(r,2) gy, (r,2),  (5)

where Vg (1), ) is the electron wave-function in the bot-
tom (top) 2D layer and U,.(r, z) is the perturbation potential
in the interlayer region.

Eq. (5) acknowledges the fact that in real devices several
physical mechanisms occurring in the interlayer region can
result in a relaxed conservation of the in plane wave-vector k
in the tunneling process. We will return to the discussion of
Us.(r, ) in this section.

To proceed in the calculation of M(kr,kg), we write the
electron wave-function in the Bloch function form as

lﬁk(l',Z) =

1 eikr
VNc

where u(r, z) is a periodic function of r and N¢ is the num-
ber of unit cells in the overlapping area A of the two 2D
materials. Eq. (6) assumes the following normalization
condition:

uk(rvz)a (6)
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FIG. 2. Sketch of the band alignments
in a Thin-TFET between the top and
bottom 2D layer in (a) OFF state and
(b) ON state.
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L dpJ dz|u (p,2)|* = 1, (7)

where p is the in-plane abscissa in the unit cell area Q- and
A=N CQC-

The wave-function ¥, (r,z) is assumed to decay expo-
nentially in the interlayer region with a decay constant
1;'?* such a z dependence is absorbed in u(r,z), and we
do not need to make it explicit in our derivations. It should
be noticed that absorbing the exponential decay in uk(r,z)
recognizes the fact that in the interlayer region the r depend-
ence of the wave-function changes with z. In fact, as already
discussed,'® while the u(r, z) are localized around the basis
atoms in the two 2D layers, these functions are expected to
spread out while they decay in the interlayer region, so that
the r dependence becomes weaker when moving farther
from the 2D layers.

To continue in the calculation of M(kr,kg), we let the
scattering potential in the interlayer region be separable in
the form'*

Use(r,2) = Vp(z) FL(r), ®)

where Fp(r) is the in-plane fluctuation of the scattering
potential, which is essentially responsible for the relaxation
of momentum conservation in the tunneling process.

By substituting Egs. (6) and (8) in Eq. (5) and writing
r =r; + p, where r; is a direct lattice vector and p is the in-
plane position inside each unit cell, we obtain

1 Qe . ,
M(kTka) = ]\]_ E el(kg—kr)Ar/-JQ dpjdzel(kg—kr)ﬁ
J=1 c

X 1t} g (854 p,2) FL(vj+ p)V(2) up i, (1) + . 2).
()

We now assume that F;(r) corresponds to relatively long
range fluctuations, so that it can be taken as approximately
constant inside a unit cell, and that, furthermore, the top and
bottom 2D layer have the same lattice constant, hence the
Bloch functions u7y, and upy, have the same periodicity in
the r plane. Moreover, for the time being, we consider that
the conduction band minimum in the top layer and the
valence band maximum in the bottom layer are at the same
point of the 2D Brillouin zone, so that q = kg — k7 is small
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compared to the size of the Brillouin zone and e” is
approximately 1.0 inside a unit cell. These considerations
and approximations allow us to rewrite Eq. (9) as

1 o ;
M(kr,Kkg) ~ N—Ze’q'r’FL(rj)J dpj dz u‘TﬁkT(p, 2)
€= Qc
X VB(Z) uB,kB(p,Z), (10)

where the integral in the unit cell has been written for r; = 0
because it is independent of the unit cell.

Consistent with the assumption that kg and k; are small
compared to the size of the Brillouin zone, in Eq. (10), we
neglect the kp (ky) dependence of ugy, (urk,) and simply
set  urk,(p,z) = uor(p,z), Upk,(p,z) = uog(p,z), where
ugr(p,z) and ugg(p,z) are the periodic parts of the Bloch
function at the band edges, which is the simplification
typically employed in the effective mass approximation
approach.?! By recalling that the ugz and ugy retain the expo-
nential decay of the wave-functions in the interlayer region
with a decay constant x, we now write

J ddez ulr (p,2) Vi (z) uos(p,z) ~ Mpoe "= (11)
Qc

where T, is the interlayer thickness and Mp, is a k inde-
pendent matrix element that will remain a prefactor in the
final expression for the tunneling current. Since F;(r) has
been assumed a slowly varying function over a unit cell,
then the sum over the unit cells in Eq. (10) can be rewritten
as a normalized integral over the tunneling area

1 Nc . 1 -
QCNCJ-:ZIQCC(] fFL(rj) ZZJACQ FL(l’)dl’. (12)

By introducing Egs. (11) and (12) in Eq. (10), we can
finally express the squared matrix element as

2 [Mgol* Sr(q)

[M(ky, k) [* = =2 e (13)

where q = kg — ky and Sg(q) is the power spectrum of the
random fluctuation described by Fy (r), which is defined as*'

2

Sr(q) = !

2 (14)

J e F; (r)dr
A

By substituting Eq. (13) in Eq. (4) and then converting the
sums over kg and k7 to integrals, we obtain

v€|Mpo|* A .
— giell fO| €72KT[LJ J dkT dkB Sp(q) b(EB (kB)
T h krJkp

— Er(kr)) (fs — fr)- (15)

Before we proceed with some important integrations of the
basic model that will be discussed in Secs. II C and IID, a few
comments about the results obtained so far are in order below.

According to Eq. (15), the current is proportional to the
squared matrix element |Mpgy |2 defined in Eq. (11) and
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decreases exponentially with the thickness interlayer T,
according to the decay constant k of the wave-functions.
Attempting to derive a quantitative expression for Mpq is
admittedly very difficult, in fact, it is difficult to determine
how the periodic functions ugr(p, z) and ugg(p, z) spread out
when they decay in the barrier region and, furthermore, it is
not even perfectly clear what potential energy or
Hamiltonian should be used to describe the barrier region
itself, which is an issue already recognized and thoroughly
discussed in the literature, since a long time.”* Our model
essentially circumvents these difficulties by resorting to the
semi-empirical formulation of the matrix element given by
Eq. (11), where Mpy is left as a parameter to be determined
and discussed by comparing to experiments.

It is also worth noting that in our calculations, we have
not explicitly discussed the effect of spin-orbit interaction in
the bandstructure of 2D materials, even if giant spin-orbit
couplings have been reported in 2D transition-metal dichal-
cogenides.”® If the energy separations between the spin-up
and spin-down bands are large, then the spin degeneracy in
current calculations should be one instead of two, which
would affect the current magnitude but not its dependence
on the gate bias. Our calculations neglected also the possible
modifications of band structure in the TMD materials pro-
duced by the vertical electrical field, in fact, we believe that
in our device, the electrical field in the 2D layers is not
strong enough to make such effects significant.?’

The decay constant x in the interlayer region may be
estimated from the electron affinity difference between the
2D layers and the interlayer material.'® Moreover, according
to Eq. (15) the constant k determines the dependence of the
current on Ty, so that k may be extracted by comparing to
experiments discussing such a dependence, which, for exam-
ple, have been recently reported for the interlayer tunneling
current in a graphene-4BN system. '

As for the spectrum Sx(q) of the scattering potential, in
our calculations, we utilize

nL%
Sr(q) = W, (16)

where q = |q| and L is the correlation length, which in our
derivations has been assumed large compared to the size of a
unit cell. Eq. (16) is consistent with an exponential form for
the autocorrelation function of F,(r),?! and a similar q de-
pendence has been recently employed to reproduce the experi-
mentally observed line-width of the resonance region in
graphene interlayer tunneling transistors.'* Such a functional
form can be representative of phonon assisted tunneling,
short-range disorder,”® charged impurities,” or Moiré patterns
that have been observed, for instance, at the graphene-ZBN
interface.’*? We will see in Sec. I E that the L has an influ-
ence on the gate voltage dependent current, which has a neat
physical interpretation, hence a comparison to experimental
data will be very informative for an estimate of L.

C. Effects of energy broadening

According to Egs. (4) and (15), the tunneling current is
simply zero when there is no energy overlap between the
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conduction band in the top layer and the valence band in the
bottom layer, that is, for Ecr > Eyp. In a real device, how-
ever, the 2D materials will inevitably have phonons, disor-
der, host impurities in the 2D layer and be affected by the
background impurities in the surrounding materials, so that a
finite broadening of the energy levels is expected to occur
because of the statistical potential fluctuations superimposed
to the ideal crystal structure.*® The energy broadening in 3D
semiconductors is known to lead to a tail of the density of
states (DoS) in the gap region, that has been also observed in
optical absorption measurements and denoted Urbach
tail.**>> It is thus expected that the finite energy broadening
will be a fundamental limit to the abruptness of the turn on
characteristic attainable with the devices of this work, hence
it is important to include this effect in our model.

Energy broadening in the 2D systems can stem from the
interaction with randomly distributed impurities and disorder
in the 2D layer or in the surrounding materials,>*>%*7 by
scattering events induced by the interfaces,”® as well as by
other scattering sources. We recognize the fact that a detailed
description of the energy broadening is exceedingly compli-
cated due to the many-body and statistical fluctuation
effects,” and thus resort to a relatively simple semi-classical
treatment.>>*® We start by recalling that the density of states
po(E) for a 2D layer with no energy broadening is

8s8v
E =
pO( ) 42

Jdké[E—E(k)}, (17)

where E(k) denotes the energy relation with no broadening
and gy, g, are spin and valley degeneracy. In the presence of
a randomly fluctuating potential V(r), instead, the DoS can
be written as®*¢

p(E) = | dopo(0Pi(E - v)

8s8v >
=9 Ldk Uo dvdlv — E(K)|P,(E — v)
_ 88

4n?

J dk P,[E — E(K)], (18)
k

where P,(v) is the distribution function for V(r) (to be further
discussed below), and we have used the po(E) definition in
Eq. (17) to go from the first to the second equality.

Comparing Eq. (18) to Eq. (17), we see that the p(E) of
the system in the presence of broadening can be calculated
by substituting the Dirac function in Eq. (17) with a finite
width function P,(v), which is the distribution function of
V(r), and it is thus normalized to one.

In order to include the energy broadening in our current
calculations, we rewrite the tunneling rate in Eq. (4) as

1

Tkr kg

= 2 0 k) P k) — )]

o0

_ %” M (k. kB)‘zj dES[E — Er(kr)IO[E — Ep(ks)],

19)

and note that, consistent with Eq. (18), the energy broaden-
ing can be included in the current calculation by substituting
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O|[E — E(k)] with P,[E — E(k)]. By doing so the tunneling
rate becomes

1

Tkr kg

2
~ ?n M (kr,Kp)|*Sp(Er(kr) — Eg(kg)),  (20)

where we have introduced an energy broadening spectrum
Sg that is defined as

o)

Se(Er(kr) — Ep(kp)) :J

XPUB[E_EB(kB)L (21)

dEP,r|E — Er(k7)]

—00

where P, and P,z are the potential distribution functions
due to the presence of randomly fluctuating potential V(r) in
the top and the bottom layer, respectively.

On the basis of Eq. (20), in our model for the tunneling
current, we accounted for the energy broadening by using in all
numerical calculations the broadening spectrum Sg(E7(kr)
— Ep(kp)) defined in Eq. (21) in place of 6[Er(kr) — Ep(kg)].
More precisely, we used a Gaussian potential distribution for
both the top and the bottom layer

1
PuE = Bua) = e BT, (22)

which has been derived by Evan O. Kane for a broadening
induced by randomly distributed impurities,®® in which case
o can be expressed in terms of the average impurity
concentration.

Quite interestingly, for the Gaussian spectrum in Eq. (22),
the overall broadening spectrum Sg defined in Eq. (21) can be
calculated analytically and reads

1 ~(Er(kr)—Ep(kg))* /o>

Se(Er(kr) — Ep(kp)) = me

(23)

Hence also S; has a Gaussian spectrum, where o7 and o are
the broadening energies for the top and bottom 2D layer,
respectively.

D. Rotational misalignment and tunneling between
inequivalent extrema

The derivations in Sec. II B assumed that there is a per-
fect rotational alignment between the top and the bottom
layer and that the tunneling occurs between equivalent
extrema in the Brillouin zone, that is tunneling from a K to a
K extremum (or from K’ to K’ extremum). We now denote
by 0 the angle expressing a possible rotational misalignment
between the two 2D layers (see Fig. 3), and still assume that
the top 2D crystal has the same lattice constant g as the bot-
tom 2D crystal. The principal coordinate system is taken as
the crystal coordinate system in the bottom layer, and we
denote with 1/, k’ the position and wave vectors in the crystal
coordinate system of the top layer (with r, k being the vec-
tors in the principal coordinate system). The wave-function
in the top layer has the form given in Eq. (6) in terms of r’,
k’, hence, in order to calculate the matrix element in the
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FIG. 3. Sketch of a possible rotational misalignment between the top and
bottom 2D layer, x-y is the reference coordinate for the bottom 2D layer and
x’-y’ is the reference coordinate for the top 2D layer. 0 is the rotational mis-
alignment angle. We assume the top layer and the bottom layer have the
same lattice constant a.

principal coordinate system, we start by writing r’ = Rz_7r,
K’ = Rp_rk, where Rp_r is the rotation matrix from the
bottom to the top coordinate system, with Rr_p= [Iég_,T]T
being the matrix going from the top to the bottom coordinate
system and M" denoting the transpose of the matrix M. The
rotation matrix can be written as

- cosf —sin0
Rr—p = <sin0 cos 0 )’ @4

in terms of the rotational misalignment angle 0.

Consistent with Sec. I B, we set ury, (r',z) =~ ugr(r’, z),
Upk, (T, 2) = upp(r, z), where uor(r’, z), uop(r, z) are the peri-
odic part of the Bloch function respectively at the band edge
in the top and bottom layer. We then denote with Kor the
wave-vector at the conduction band edge in the top layer
(expressed in the top layer coordinate system) and with Kop
the wave-vector at the valence band edge in the bottom layer
(expressed in the principal coordinate system); the deriva-
tions in this section account for the fact that Koy and Kop
may be inequivalent extrema (i.e., Ko7 # Kgp).

By expressing r’ and Kk’ in the principal coordinate
system, we can essentially follow the derivations in Sec. II B
and write the matrix element as

1 &,
M(kr,kp) ~ —Ze’(q+QD)"fFL(rj) x J er dzub,
Ne = Qc
* (Rp—r(r; + p),2) Va(2) uop(r; + p.2),  (25)
where q = (kg — kr), and we have introduced the vector
Q) = Koz — R7—Kor. (26)

Eq. (25) is an extension of Eq. (10) that accounts for a possi-
ble rotational misalignment between the 2D layers and
describes also the tunneling between inequivalent extrema.
The vector Qp, is zero only for tunneling between equivalent
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extrema (i.e., Ko = Kgr) and for a perfect rotational align-
ment (i.e., 0 =0). Considering a case where all extrema are
at the K point, we have |Kog| = |Kor| = 47/3a9, then for
Ko = Kor, the magnitude of Qp is simply given by
Op = (871/3ap)sin(0/2)."

One significant difference in Eq. (25) compared to Eq.
(10) is that, in the presence of rotational misalignment, the
top layer Bloch function ugy (Ié p—7T,2) has a different perio-
dicity in the principal coordinate system from the bottom
layer ugg(r, z). Consequently, the integral over the unit cells
of the bottom 2D layer is not the same in all unit cells, so
that the derivations going from Eq. (10) to Eq. (15) should
be rewritten accounting for a matrix element Mp ; depending
on the unit cell j. Such an Mg ; could be formally included
in the calculations by defining a new scattering spectrum that
includes not only the inherently random fluctuations of the
potential F.(r) but also the cell to cell variations of the
matrix element Mpo; A second important difference of
Eq. (25) compared to Eq. (10) lies in the presence of Qp in
the exponential term multiplying Fy (r;).

For the case of tunneling between inequivalent extrema
and with a negligible rotational misalignment (i.e., 0 ~ 0),
Eq. (26) gives Q, = Kop — Kor, and the current can be
expressed as in Eq. (15) but with the scattering spectrum
evaluated at |q + Qp]|. Since, in this case, the magnitude
of Qp is comparable to the size of the Brillouin zone, the
tunneling between inequivalent extrema is expected to be
substantially suppressed if the correlation length L. of the
scattering spectrum Sz(q) is much larger than the lattice con-
stant, as it has been assumed in all the derivations.

Quite interestingly, the derivations in this section sug-
gest that a possible rotational misalignment is expected to
affect the absolute value of the tunneling current, but not to
change significantly its dependence on the terminal voltages.

From a technological viewpoint, if the stack of the 2D
materials is obtained using a dry transfer method the rotational
misalignment appears inevitable.'"**°  Experimental results
have shown that, when the stack of 2D materials is obtained by
growing the one material on top of the other, the top 2D and
bottom 2D layer can have a fairly good angular alignment.*'**

E. An analytical approximation for the tunneling
current

The numerical calculations for the tunneling current
obtained with the model derived in Secs. II B and II C will be
presented in Sec. III while in this section, we discuss an ana-
lytical, approximated expression for the tunneling current,
which is mainly useful to gain an insight about the main
physical and material parameters affecting the current versus
voltage characteristic of the Thin-TFET. In order to derive
an analytical current expression, we start by assuming a par-
abolic energy relation and write
n*k n*k

Ecr(kr) = E — 27
cr(kr) CTJFZmCy 27

Eyp(kg) = Evp —
va(Kg) VB m,

where Eyp(kp), Ecr(kr) are the energy relation, respec-
tively, in the bottom layer valence band and top layer con-
duction band and m,,, m,. the corresponding effective masses.
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In the analytical derivations, we neglect the energy
broadening and start from Eq. (15), so that the model is
essentially valid only in the on-state of the device, that is for
Ecr < Eyp.

We now focus on the integral over kg and k7 in Eq. (15)
and first introduce the polar coordinates kg = (kg, Op),
kr = (kr, 0r), and then use Eq. (27) to convert the integrals
over kg, k7 to integrals over respectively Eg, E, which leads
to

! O(Jk L dkr dkg Sr(q) 6(Eg(ks) — Er(kr)) (f5 — fr)

21 21 o0 EVB
:m;l:”v J dOBJ d()TJ dETJ dEB SF(q)
0

0 Ecr —00

X 6(E3 — ET) (fB —fr), (28)

where the spectrum Sg(q) is given by Eq. (16) and thus
depends only on the magnitude g of q = kg — kr. Assuming
Ecr < Eyp, the Dirac function reduces one of the integrals
over the energies and sets £ = Ep = Ep, furthermore the
magnitude of q = kp —ky depends only on the angle
0 = 0g — 07, so that Eq. (28) simplifies to

o1y (2 2n Evp
,&%ﬁj d‘)J dESp(q) (fs —fr). (29
0 Ecr

In the on-state condition (i.e., for Ecr < Eyg), the zero
Kelvin approximation for the Fermi—Dirac occupation func-
tions f, f; can be introduced to further simplify Eq. (29) to

X ! 2 2n Enax
I %}’”J dé)J dESp(q), (30)
0 E,in

where E,;, = max{Ecr,Err} and E,, = min{Eyp,Erp}
define the tunneling window [E .y — Ejpin)-

The evaluation of Eq. (30) requires to express ¢ as a
function of the energy E inside the tunneling window and of
the angle 0 between kz and k;. By recalling ¢° = klzg + k%
—2kpkr cos(6), we can use Eq. (27) to write

2m, 2m,
q = F(EVB —E)+ 7 (E —Ecr)
4,/m.m,

— Y /(Eyg — E)(E — Ecr)cos(),  (31)

with £ = Eg = Er. When Eq. (31) is substituted in the spec-
trum Sz(q), the resulting integrals over E and 0 in Eq. (30)
cannot be evaluated analytically. Therefore, to proceed fur-
ther, we now examine the maximum value taken by ¢°. The
0 value leading to the largest ¢* is 0 =7, and the resulting ¢*
expression can be further maximized with respect to the
energy E varying in the tunneling window. The energy lead-
ing to maximum ¢? is

o Ecr + (me/my)Evg
M 1+ (me/my)

; (32)

and the corresponding qlzw is
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Z(m(' + mv)(EVB - ECT)
h2

ay = . (33)

When neither the top nor the bottom layer are degener-
ately doped, the tunneling window is given by E,;,=Ecr
and E,,.=Eyp, in which case the E,; defined in Eq. (32)
belongs to the tunneling window, and the maximum value of
g’ is given by Eq. (33). If either the top or the bottom layer
is degenerately doped, the Fermi levels become the edges of
the tunneling window, and the maximum value of q* may be
smaller than in Eq. (33).

A drastic simplification in the evaluation of Eq. (30) is
obtained for q,%,, <1 /Lf in which case Eq. (16) returns to
Sr(q) &~ nL?, so that by substituting Sx(q) in Eq. (29) and
then in Eq. (15) the expression for the current simplifies to

~ egvA (mcmv)

1 P

|M30|2 e_szlL L? (Emax - Emin)a (34)

where we recall that E,;, = max{Ecr,Err}, Epnax
= min{Eyg, Erg} define the tunneling window.

It should be noticed that Eq. (34) is consistent with a
complete loss of momentum conservation, so that the current
is simply proportional to the integral over the tunneling
window of the product of the density of states in the two 2D
layers. Since for a parabolic effective mass approximation
the density of states is energy independent, the current turns
out to be simply proportional to the width of the tunneling
window. In physical terms, Eq. (34) corresponds to a situa-
tion where the scattering produces a complete momentum
randomization during the tunneling process.

As can be seen, as long as the top layer is not degener-
ate, we have E,,;, = Ecr and the tunneling window widens
with the increase of the top gate voltage V1, hence, accord-
ing to Eq. (34), the current is expected to increase linearly
with V7. However, when the tunneling window increases
to such an extent that q%,, becomes comparable to or larger
than 1/L?, then part of the ¢ values in the integration of
Eq. (30) belong to the tail of the spectrum Sy(q) defined in
Eq. (16), and so their contribution to the current becomes
progressively vanishing. The corresponding physical picture
is that, while the tunneling window increases, the magnitude
of the wave-vectors in the two 2D layers also increases,
and, consequently, the scattering can no longer provide
momentum randomization for all the possible wave-vectors
involved in the tunneling process. Under these circumstan-
ces, the current is expected to first increase sub-linearly with
V7 and eventually saturate for large enough V¢ values.

lll. NUMERICAL RESULTS FOR THE TUNNELING
CURRENT

The 2D materials used for the tunneling current calcula-
tions reported in this paper are the hexagonal monolayer
MoS, and WTe,. The band structure for MoS, and WTe, has
been calculated by using a density functional theory (DFT)
approach,'®* showing that these materials have a direct
bandgap with the band edges for both the valence and the
conduction band residing at the K point in the 2D Brillouin
zone. Fig. 4 shows that in a range of about 0.4eV from the
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band edges, the DFT results can be fitted fairly well by using
an energy relation based on a simple parabolic effective
mass approximation (dashed lines). Hence, the parabolic
effective mass approximation appears adequate for the pur-
poses of this work, which is focussed on a device concept for
extremely small supply voltages (< 0.5V). The values for
the effective masses inferred from the fitting of the DFT
calculations are tabulated in Table I together with some other
material parameters relevant for the tunneling current
calculations.

In all current calculations, we assume a top gate work
function of 4.17eV (Aluminium) and back gate work func-
tion of 5.17eV (p+ + Silicon), and the top and bottom
oxides have an effective oxide thickness (EOT) of 1 nm (see
Fig. 1). The top 2D layer consists of hexagonal monolayer
MoS, while the bottom 2D layer is hexagonal monolayer
WTe,. An n-type and p-type doping density of 10"2cm 2 by
impurities and full ionization are assumed respectively in the
top and bottom 2D layer, and the relative dielectric constant
of the interlayer material is set to 4.2 (e.g., boron nitride).
The voltage Vg between the drain and the source is set to
0.3V, and the back gate is grounded for all calculations,
unless otherwise stated.

As already pointed out in Sec. IIB, it is very difficult
to derive a quantitative expression for the tunneling matrix
element Mg o. However, the value of Mg could be inferred
from the experimental data. In the lack of experimental data
for a vertical transistor consisting of transition-metal dichal-
cogenides, we have set the value of Mg to be 0.01 eV in our
calculations, so that the resultant current density is in the
same order of magnitude with the experimental value
reported in the graphene/hBN system.**

TABLE I. The band gaps, electron affinities, and effective masses used for
MoS, and WTe,,

Bandgap  Electron Conduction band Valence band
eV) affinity (y) effective mass (mg) effective mass (mg)
MoS, 1.8 4.30 0.378 0.461
WTe, 0.9 3.65 0.235 0.319

(b)

In Fig. 5, the results of numerical calculations are shown
for the band alignment and the current density versus the top
gate voltage V. Figure 5(a) shows that the top gate voltage
can effectively govern the band alignment in the device and,
in particular, the crossing and uncrossing between the con-
duction band minimum E7 in the top layer and the valence
band maximum Ey in the bottom layer, which discriminates
between the on and off state of the transistor.

The Ipg versus Vi characteristic in Fig. 5(b) can be
roughly divided into three different regions: sub-threshold
region, linear region, and saturation region. The sub-threshold
region corresponds to the condition E-7> Eyp (see also Fig.
5(a)), where the very steep current dependence on V4 is illus-
trated better in Fig. 6 and will be discussed below.

In the second region, Ipg exhibits an approximately
linear dependence on Vg, in fact, the current is roughly pro-
portional to the energy tunneling window, as discussed in
Sec. ITE and predicted by Eq. (34), because the tunneling
window is small enough that the condition ¢3, < 1/L? is
fulfilled. In this region Ipg is proportional to the
long-wavelength part of the scattering spectrum Sz(g) (i.e.,
small ¢ values), hence the current increases with L., as
expected from Eq. (34). The super-linear behavior of Ipg at
small V75 values observed in Fig. 5(b) is due to the tail of
the Fermi occupation function in the top layer. When Vg is
increased above approximately 0.5 V, the current in Fig. 5(b)
enters the saturation region, where Ip¢ increasing with Vg
slows down because of the decay of the scattering spectrum
Sr(q) for ¢ values larger than 1/L.. (see Eq. (16).

In Fig. 6, we analyze the I-V curves for different inter-
layer thicknesses T;; and broadening energies o; in all cases,
an average inverse sub-threshold slope is extracted in the Ipg
range from 107> and 102 uA/um?. Figure 6(a) shows that
the tunneling current increases exponentially by decreasing
T,., and the decay constant k=3.8nm~' employed in our
calculations results in a dependence on Ty that is roughly
consistent with the dependence experimentally reported in
graphene based interlayer tunneling devices.'” The threshold
voltages are also shifted to lower values by increasing T;. It
can be seen that the T;; impact on SS is overall weak, and a
very steep sub-threshold region is obtained for all the T;;
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FIG. 5. Numerical results of (a) band
alignment versus the top gate voltage
Vre and (b) tunnel current density ver-
sus the top gate voltage V¢ for differ-
ent values of the correlation length L.
The parameters used in (b) are as fol-
lows: Matrix element is Mo =0.01¢V;
decay constant of wave-function in the
interlayer is x=3.8nm™'; energy
broadening is ¢=10meV; and inter-
layer thickness is 7, =0.6nm (e.g., 2
atomic layers of BN). Vps=0 and
Vps=10.3V in both (a) and (b).

074508-9 Li etal.
102
———T—T— 77— 2.4 rrreer T
0.2 _Use E., as the energy reference_
—=— E, of the bottom 2D layer | 20[—o Lc_ 2nm
—e— E_ of the top 2D layer NE 18L —o—L =6nm
0.1 4 =1 I fe}
- < 16f——L =10nm
S Tunnel Window I ES -
® s, 1.4f
< 0.0; 2 I
> n 12F
o c L
3 8 10p
g -0-1 2 osf
[ L
E 0.6 |
-0.2 O o4l
02}
-0.3 0 -
00 01 0.2 0.3 04 0.5 0.6 0.7
Vi (V)

(a)

values examined in Fig. 6(a). This is because, in order for
the Thin-TFET to obtain a small SS, it is absolutely neces-
sary that V¢ has a tight control on the electrostatic potential
in the top semiconductor layer, but has a negligible influence
on the potential of the bottom semiconductor layer. The SS
is thus insensitive to T;; as long as T;; does not change the
control of Vs on such potentials. In short, for Thin-TFETs,
a larger interlayer thickness reduces substantially the current
density, but does not deteriorate SS.

Figure 6(b) shows that according to the model employed
in our calculations SS is mainly governed by the parameter ¢
of the energy broadening Eq. (22). This result is expected, as
already mentioned in Sec. IIC, since, in our model, the
energy broadening is the physical factor setting the minimum
value for SS, and the I versus Vs approaches a step-like
curve when ¢ is zero due to the step-like DoS of these 2D
semiconductors.*> More specifically, Fig. 6(b) shows that
according to our calculations, the Thin-TFET may be able to
provide an SS below the 60 mV/dec (i.e., the limit of conven-
tional MOSFETSs at room temperature), even for fairly large
broadening energies up to about 40 meV. It is here worth

3 . . 10°
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(b)

noting that energy broadening and band tails have been
already recognized as a fundamental limit to the SS of
band-to-band tunneling transistors,*® and are not a specific
concern of the Thin-TFET. As already mentioned in
Sec. IIC, the band tails in 3D semiconductors have been
investigated by using thermal measurements and are
described in terms of the so called Urbach parameter E¢.**
Values for E, comparable to the room temperature thermal
energy, kzT ~ 26 meV, have been reported for GaAs and
InP.*”** Our results suggest that energy broadening and
band tails in 2D materials play a critical role in the minimum
SS attainable by Thin-TFETs, and, at the time of writing, we
are not aware of experimental data reported for band tails in
monolayers of transition-metal dichalcogenides.

IV. DISCUSSION AND CONCLUSIONS

This paper proposed a new steep slope transistor based
on the interlayer tunneling between two 2D semiconductor
materials and presented a detailed model to discuss the phys-
ical mechanisms governing the device operation and to gain

FIG. 6. Numerical calculations for: (a)
current density versus V7 with several
interlayer thicknesses; (b) current den-
sity versus Vg with different values of
energy broadening ¢. The inset shows
that SS increases with o, and a SS
value of 60 mV/dec corresponds to a
energy broadening as high as 40 meV.
The matrix element is Mpy=0.01¢eV;
the decay constant of wave-function in
the interlayer is k=3.8nm " In (a),
the energy broadening is ¢ =10 meV.
In (b), the interlayer thickness is
T;,=0.6nm (e.g., 2 atomic layers of
BN). V=0 and V;5=0.3V in both
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107
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an insight about the tradeoffs implied in the design of the
transistor.

The tunnel transistor based on 2D semiconductors has
the potential for a very steep subthreshold region, and the
subthreshold swing is ultimately limited by the energy
broadening in the two 2D materials. The energy broadening
can have different physical origins, such as disorder, charged
impurities in the 2D layers or in the surrounding materi-
als,®”*® phonon scattering® and microscopic roughness at
interfaces.®® In our calculations, we accounted for the energy
broadening by assuming a simple Gaussian energy spectrum
with no explicit reference to a specific physical mechanism.
However, a more detailed and quantitative description of the
energy broadening is instrumental in physical modeling of
the device and its design.

Quite interestingly, our analysis suggests that, while a
possible rotational misalignment between the two 2D layers
can affect the absolute value of the tunneling current, the
misalignment is not expected to significantly degrade the
steep subthreshold slope, which is the crucial figure of merit
for a steep slope transistor.

An optimal operation of the device demands a good
electrostatic control of the top gate voltage V75 on the band
alignments in the material stack, as shown for example in
Fig. 5(a), which may become problematic if the electric field
in the interlayer is effectively screened by the high electron
concentration in the top 2D layer. Consequently, since high
carrier concentrations in the 2D layers are essential to reduce
the layer resistivities, a tradeoff exists between the gate con-
trol and layer resistivities; as a result, doping concentrations
in these 2D layers are important design parameters in addi-
tion to tuning the threshold voltage. In this respect, chemical
doping of TMD materials have been recently demon-
strated,”®>! however these doping technologies are still far
less mature than they are for 3D semiconductors, and
improvements in in-situ doping will be very important for
optimization of the device performance. Since our model
does not include the lateral transport in the 2D materials, an
exploration of the above design tradeoffs goes beyond the
scope of the present paper and demands the development of
more complete transport models.

The transport model proposed in this work does not
account for possible traps or defects assisted tunneling, which
have been recently recognized as a serious hindrance to the
experimental realization of Tunnel-FETs exhibiting a sub-
threshold swing better than 60 mV/dec.'""'* A large density of
states in the gap of the 2D materials may even lead to a Fermi
level pinning that would drastically degrade the gate control
on the band alignment and undermine the overall device oper-
ation. In this respect, from a fundamental viewpoint, the 2D
crystals may offer advantages over their 3D counterparts
because they are inherently free of broken/dangling bonds at
the interfaces.'” However, the fabrication technologies for 2D
crystals are still in an embryonal stage compared to technolo-
gies for conventional semiconductors, hence, the control of
defects in the 2D materials will be a challenge for the devel-
opment of the proposed tunneling transistor.

The simulation results reported in this paper indicate
that the newly proposed transistor based on interlayer
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tunneling between two 2D materials has the potential for a
very steep turn-on characteristic, because the vertical stack
of 2D materials having an energy gap is probably the device
structure that allows for the most effective, gate controlled
crossing and uncrossing between the edges of the bands
involved in the tunneling process. Our modeling approach
based on the Bardeen’s transfer Hamiltonian is, by no means,
a complete device model but, instead, a starting point to gain
insight about its working principle and its design. At the
present time, an experimental demonstration of the device
appears of crucial importance, first of all to validate the
device concept and then to help estimate the numerical value
of a few parameters in the transport model that can be deter-
mined only by comparing to experiments.
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