Vertical Ga$_2$O$_3$ Schottky Barrier Diodes on Single-Crystal β–Ga$_2$O$_3$ (-201) Substrates

Bo Song1,2, Amit Kumar Verma1,3, Kazuki Nomoto1,2, Mingda Zhu1,2, Debdeep Jena1,2,3 and Huili (Grace) Xing1,2,3

1Department of Electrical and Computer Engineering, Cornell University, Ithaca, NY 14853, USA
2Department of Electrical Engineering, University of Notre Dame, Notre Dame, IN 46556, USA
3Department of Materials Science and Engineering, Cornell University, Ithaca, NY 14853, USA

Email: bs728@cornell.edu and grace.xing@cornell.edu

Owing to the large bandgap, breakdown electric field (E_b) and high carrier mobility, wide-bandgap semiconductor (e.g. SiC and GaN) based power devices have been extensively studied for next-generation power-switching applications [1-2]. Recently, a new wide-bandgap oxide semiconductor, gallium oxide (β-Ga$_2$O$_3$), has attracted attention for power-switching applications because it has an extremely large bandgap of 4.5–4.9 eV enabling a high breakdown voltage (V_{br}) and a high Baliga’s figure of merit [3]. Furthermore, large-area and high-quality bulk substrates of Ga$_2$O$_3$ can be grown by low-cost methods, which remains a significant challenge for both SiC and GaN. Schottky barrier diodes (SBDs), with a low turn-on voltage and a fast switching speed due to majority carrier conduction, are ideal candidates for high-power and high-speed rectifiers. Recently, Higashiwaki et al. have demonstrated excellent device results, which includes SBDs with V_{br} ~115 V on (010) Ga$_3$O$_5$ substrates (with a net doping concentration N_D-N_A ~ 5x1016 cm$^{-3}$) [4] and SBDs with epitaxial Si-doped n-Ga$_2$O$_3$ drift layers (N_D-N_A ~ 1.4x1016 cm$^{-3}$) grown by HVPE on (001) Ga$_2$O$_3$ substrates with V_{br} ~ 500 V [5]. Oishi et al reported Ni-based SBDs on (-201) Ga$_2$O$_3$ with a N_D-N_A ~ 1x1017 cm$^{-3}$ and V_{br} ~ 40 V [6]. However, no high voltage (V_{br} > 100 V) devices have been reported yet on (-201) Ga$_2$O$_3$, the crystal orientation readily available in up to 4 inch diameter wafer. In this work, we report Pt-based SBDs fabricated on unintentionally-doped (UID) (-201) n-type Ga$_2$O$_3$ substrates with V_{br} > 100 V.

Figure 1 shows the schematic cross section and the I/C2-V plot of the fabricated Ga$_2$O$_3$ SBDs. The net doping concentration (N_D-N_A) in the (-201) Ga$_2$O$_3$ substrates extracted by the $d(I/C^2)/dV$ method is ~1.1x1017 cm$^{-3}$. The built-in potential extracted from the I/C^2-V plot is V_{bi}~1.22 V as shown in Fig.1 (b). The substrate thickness is ~680 μm and the resistivity ~6.3 Ω·sq. The top circular Schottky anode electrodes with diameters of 50 μm and 390 μm were fabricated on Ga$_2$O$_3$ substrates by photolithographic patterning, followed by evaporation of Pt (80 nm) as anode and, and liftoff. The back cathode is formed by evaporation of a Ti (50 nm)/Pt (100 nm) metal stack. A rapid thermal annealing (RTA) process at 470 °C in N$_2$ ambient for 60 s is applied to devices labeled as w/ RTA. No additional surface passivation or field plate is employed for the devices studied in this work. The 50 μm and 390 μm diameter diodes were used for current density-voltage (I-V) and capacitance-voltage (C-V) measurements, respectively. All measurements were performed at room temperature.

Figure 2 shows the I-V curves measured between two back-contacts separated by ~160 μm on a test sample using the same substrate and metal stack w/ and w/o RTA. The contacts fabricated with the RTA process showed a reasonable ohmic behavior with high current capability. On the other hand, the as-deposited metal stack contacts show a Schottky behavior thus allowing only very low currents. The detailed mechanism for this improvement is not yet clear and warrants further investigation.

Figures 3(a) and (b) show the forward J-V characteristics of the SBDs in logarithmic and linear scales, respectively. The turn-on voltage is about 1 V for both cases. Near unity ideality factors of 1.02 are obtained for both SBDs with and without RTA. The extracted Pt/Ga$_2$O$_3$ barrier height ϕ_B is 1.53 eV and 1.35 eV for w/o and w/ RTA process, respectively. The Pt/(-201) Ga$_2$O$_3$ barrier height extracted here is close to the reported values in the range of 1.3-1.5 eV for Pt/(010) Ga$_2$O$_3$ [4]. In Fig.3 (b), the SBD w/ RTA process shows a dramatic improvement in the forward current-carrying capability: from 34 to 400 A/cm2 @ 2V. This is most likely a result of the improved back-contact and a reduction of ϕ_B. The differential on-resistance R_{on} as determined from the slope of the linear regions in Fig. 3(b) for SBD w/o RTA and w/ RTA is about 29.4 and 2.5 mΩ·cm2, respectively. Since the substrate specific resistivity along the current flowing direction is 26.5 mΩ·cm2, a R_{on} of 2.5 mΩ·cm2 is attributed to current lateral spreading from the top anode to the bottom contact. The reverse J-V characteristics are shown in Fig. 4 and V_{br} for both SBDs is about 120 V. The hard breakdown observed in both devices at the edge of the anode electrodes is due to electric-field crowding. This observation indicates that using edge terminations such as a field plate and/or a guard ring will improve V_{br}. Nonetheless, the critical surface breakdown field pointing along the [-201] direction can be estimated to be > 2.1 MV/cm.

In summary, we fabricated Pt/Ga$_2$O$_3$ SBDs on single-crystal β–Ga$_2$O$_3$ (-201) substrates for the first time. Ohmic contacts were obtained on the backside with a RTA process. The Pt/Ga$_2$O$_3$ SBDs on (-201) substrates show similar behavior with the devices fabricated on (010) Ga$_2$O$_3$ substrates.
This work is in part supported by NSF DMREF (ECCS-1534303). The device fabrication was performed at the Cornell NanoScale Facility, a member of the National Nanotechnology Coordinated Infrastructure (NNCI), which is supported by NSF (Grant ECCS-1542081).

![Anode (Pt)](image1)

Fig.1 (a) Schematic cross section of SBDs on (-201) Ga$_2$O$_3$ substrate and (b) $1/C^2$-V characteristics of Ga$_2$O$_3$ SBDs w/ RTA showing net doping concentration ~1.1x1017 cm$^{-3}$ built-in voltage ~ 1.22 V.

![Cathode (Ti/Pt)](image2)

Fig.2 I–V curves measured between two contacts at the backside of on (-201) Ga$_2$O$_3$ substrate with Ti/Pt and the metal stacks at w/o and w/ RTA process conditions.

![Forward J-V characteristics](image3)

Fig.3 Forward J-V characteristics of Ga$_2$O$_3$ SBD w/o and w/ RTA process plotted in (a) logarithmic and (b) linear scales. With the RTA process, the back contact dramatically improves, which helps to improve the current density from ~34 to 400 A/cm2. Near unit ideality factors of 1.02 were obtained for the both SBDs and extracted barrier for SBDs w/o and w/ RTA process is 1.53 and 1.35 eV, respectively.

![Reverse J-V characteristics](image4)

Fig.4 Reverse J-V characteristics of Ga$_2$O$_3$ SBDs w/o and w/ RTA