GaN Vertical Nanowire and Fin Power MISFETs
Zongyang Hu1, Wenshen Li1, Kazuki Nomoto1, Mingda Zhu1, Xiang Gao2, Manyam Pilla3
Debdeep Jena1 and Huili Grace Xing1
1Cornell University, Ithaca, NY 14850 USA. Email: zh249@cornell.edu
2IQE RF LLC, Somerset, NJ 08873 USA. 3Qorvo Inc., Richardson, TX 75080 USA.

Introduction: GaN vertical power devices have many advantages over lateral devices in device scaling, reliability and thermal management, etc. Traditional power transistors employ p-type pockets to achieve E-mode, RESURF and avalanche capabilities. However, this topology in GaN vertical power transistors has been challenging to implement [1] due to the difficulty to achieve selective area doping without compromising breakdown: p-type pockets in n-type regions or vice versa. The GaN UMOS-FETs or trench MOSFETs can be realized using epitaxial p-layers, however, suffer from low channel mobility in the inversion channel [2, 3]. Using n-type GaN only, depletion mode vertical MISFETs can be achieved with attractive current densities and breakdown voltages [4]. To get normally-off operation, Fin or nanowire (NW) pillars are necessary geometries. Compared with Fins, GaN nanowires have added advantages including superior electrostatic control and possibility for low-cost growth on foreign substrates [5, 6]. In this work, we report the first experimental demonstration of NW-MISFETs on bulk GaN substrates and compare them with Fin-MISFETs with the state-of-the-art performance fabricated on the same sample. The benefit of better electrostatic gate control in nanowire MISFETs are highlighted.

Device Epitaxy and Fabrication: The GaN epi structure is grown on bulk GaN substrates by MOCVD, consisting of a 7 μm n-GaN drift layer with a net donor concentration of ~6x10^{15} cm^{-3} (Fig. 1). The NWs and Fins are formed by a top-down approach: dry etch followed by a hot TMAH wet etch to form vertical side walls, first reported by Kodama et al. [2]. Images of fabricated NWs are shown in Fig. 2. The key device fabrication steps after the NW/Fin formation are shown in Fig. 3.

Results: The output characteristics of the Fin-MISFET are shown in Fig. 4. An on-current of 14 kA/cm^2 and Ron of 0.4 mΩcm^2 are extracted, which are on a par with the state-of-the-art values reported in [4]. Fig. 5 shows the transfer characteristics of a Fin-MISFET with a single pillar and a NW-MISFET with 120 pillars. Due to the non-uniformity in NW fabrication, the off-state leakage of the NW-MISFET is higher than the single-pillar Fin device. The off-state characteristics of the Fin-MISFET under different gate-bias is shown in Fig. 6. Under more negative gate-bias, the breakdown voltage of the same device increases, reaching a highest value 513 V under Vgs=-15 V where the device undergoes a hard breakdown. This behavior is attributed to the drain induced barrier lowering (DIBL) effect. Due to the all-around gate geometry in NW-MISFETs, the electrostatic control of the channel is better. Thus, the NW-MISFET promises a higher and more stable breakdown voltage thanks to the suppressed DIBL effect. In addition, the NW geometry allows for a higher Vth than Fins of the same width (diameter for NWs). Using an abrupt depletion edge approximation, an analytical expression for the threshold voltage is derived for NWs:

\[V_{th} = V_{fb} - \frac{eN_ad_{NW}^4}{2e_{ox}} - \frac{eN_ad_{NW}^2}{2e_{ox}} \ln \frac{d_{NW} + d_{ox}}{d_{NW}} \]

Fig. 7 shows the comparison of the calculated Vth of the Fin- and NW- MISFETs. When the Fin width (WFin) and the NW diameter (dNW) are the same, Vth is always higher for NW-MISFETs, regardless of the insulator interface charge density. Due to the limited device yield, we are not able to get a good fit and a comprehensive comparison of the Vth between the two device geometries experimentally; nonetheless, this work represents the first attempt to use NWs on bulk GaN to curb DIBL-impacted breakdown behavior in vertical GaN power transistors.

Conclusion: Vertical NW-MISFETs on bulk GaN for power electronics have been fabricated and compared with the vertical GaN Fin-MISFETs with the state-of-the-art performance simultaneously fabricated on the same sample. DIBL effect is observed in the off-state characteristics, indicating the importance of gate-control in such devices. With the all-around gate geometry, the NW-MISFET has better electrostatic control, which promises higher BV and Vth. The added possibility of low-cost, bottom-up realization on foreign substrate makes GaN vertical NW-MISFET an attractive candidate for the new generation, high performance power devices.

Acknowledgement: This work was supported in part by the ARPA-E SWITCHES program (DE-AR0000454) monitored by Tim Heidel and Isik Kizilyali and carried out at the Cornell Nanoscale Science and Technology Facilities (CNF) sponsored by the NSF NNCI program (ECCS-15420819) and New York State.

Fig. 1. Schematic of NW/Fin MISFETs.

Fig. 2. SEM images of the GaN-on-GaN nanowires after dry etch and hot TMAH wet etch.

Fig. 3. Schematic of the key process steps after forming NWs/Fins. (a) ALD Al₂O₃ dielectric deposition and Cr gate sputtering after NW/Fin formation. (b) Photoresist (PR) planarization and thinning followed by gate metal etch. (c) SiO₂ spacer deposition and 2nd PR planarization. (d) Source pad metallization.

Fig. 4. Output characteristics of the vertical Fin-MISFETs.

Fig. 5. Transfer I-V of the (a) Fin-MISFET, (b) nanowire-MISFET.

Fig. 6. Off-state characteristics of Fin-MISFETs under different gate bias.

Fig. 7. Calculated V_{th} of the fabricated Fin- and NW-MISFETs, assuming a gate dielectric thickness of 50 nm and a doping concentration of 6×10^{15} cm$^{-3}$.