Vertical Fin Ga$_2$O$_3$ Power Field-Effect Transistors with On/Off Ratio $>10^9$

Zongyang Hu1,*, Kazuki Nomoto1,*, Wenshen Li1, Liheng Jerry Zhang, Jae-Ho Shin1, Nicholas Tanen1, Tohru Nakamura2, Debdeep Jena1 and Huili Grace Xing1

1Cornell University, Ithaca, NY 14853, USA. 2Hosei University, Tokyo 184-0003, Japan

*Contributed equally to this work, Email: zh249@cornell.edu, grace.xing@cornell.edu

Introduction. Recently, Ga$_2$O$_3$ has become an attractive material for both power electronic and optoelectronic device applications since large-size electronic-grade Ga$_2$O$_3$ substrates can be readily produced by melt-grown methods. Furthermore, high quality epitaxy and n-type doping schemes have been demonstrated [1, 2]. Due to its ultra-wide band gap (~4.5-4.9 eV), Ga$_2$O$_3$ is estimated to have a critical breakdown field >6 MV/cm, comparing favorably with ~3 MV/cm in SiC and ~4 MV/cm in GaN. This allows devices capable of handling large switching voltages. Devices such as lateral channel MOSFETs, MESFETs [3], MISFETs [4], nano-membrane FETs [5] and lateral FinFETs [6], vertical Schottky Barrier Diodes (SBDs) [7, 8], and deep-UV solar-blind photodetectors [9] have all been demonstrated using Ga$_2$O$_3$. Here, we report the first Ga$_2$O$_3$ vertical power transistors with a breakdown voltage (BV) of 185 V.

Device structure and fabrication. The devices are fabricated on commercially available unintentionally doped (UID) (~201) Ga$_2$O$_3$ substrates. First, Si ion implantation is applied to the top surface of the substrate, followed by an activation annealing, to facilitate ohmic contact formation [1]. Then, a metal hard mask is patterned using electron beam lithography (EBL) to define the fin channel with a fin width ranging from 200-400 nm. Subsequently, the vertical fins are formed using a BCl$_3$/Ar based dry etch [10], resulting a fin-pillar height of ~1 µm. A 50 nm Al$_2$O$_3$ gate dielectric is deposited using atomic layer deposition (ALD). The gate contact is then deposited, followed by a photoresist planarization and thinning process. A SiO$_2$ spacer layer is used to isolate the gate and source contacts. Finally, the source pad contacts are deposited and the devices are isolated. The gate length is estimated to be ~500 nm. Fig. 1 shows the device schematic.

Results and discussion. MOS capacitor structures fabricated on the same sample are used to extract the net doping concentration in the UID Ga$_2$O$_3$ substrate, which is found to be \sim1017 cm$^{-3}$ extracted from the C-V measurements, as shown in Fig. 2. In Fig. 3, the family of I_d-V_{ds} and the transfer curve of I_d-V_{gs} are shown for a FinFET with a fin width of 400 nm. The output current density reaches >1 kA/cm2, however, clearly exhibiting room for improvement if the ohmic contacts are improved. A high current on/off ratio $>10^9$ is observed in the transfer I-V. The device also suffers from severe short channel effects due to the unfavorable electrostatic control: ~400 nm fin width, ~500 nm gate length and a channel doping concentration of 1017 cm$^{-3}$; as a result, the drain current does not saturate well at high V_g. The electrostatic control is much improved in the 200 nm wide devices (not shown). Thanks to the mitigated drain induced barrier lowering (DIBL) effects, a BV of >185 V was measured on devices with a fin width of 200 nm. A comparison between the drain and gate current (Fig. 3d) reveals that the breakdown in these devices is likely limited by the field crowding near the bottom of the fin; implementation of field plates should help improve BV, and further improvement is expected with a lower channel doping concentration.

Conclusions Vertical FinFET topology is an attractive option to realize Ga$_2$O$_3$ power switches due to the lack of p-type Ga$_2$O$_3$. Here we demonstrate promising results for the first time.

Acknowledgement: This work was supported in part by the NSF DMREF program (DMR-1534303) and carried out at the Cornell Nanoscale Science and Technology Facilities (CNF) sponsored by the NSF NNCI program (ECCS-15420819) and New York State.

Fig. 1. Ga$_2$O$_3$ vertical Fin-FET power transistors. (a) Schematic cross section, (b) optical image of a finished device (top view), and (c) scanning electron microscopy image of a Ga$_2$O$_3$ fin on (-201) UID Ga$_2$O$_3$ substrate after dry etch.

Fig. 2. (a) Ga$_2$O$_3$ MOS capacitor test structure, (b) C-V and (c) extracted net doping concentration profile in Ga$_2$O$_3$.

Fig. 3. Vertical Ga$_2$O$_3$ Fin-FET I-V characteristics, showing an on/off ratio >109 and BV >185 V.