Bottom tunnel junction blue light-emitting field-effect transistors

Cite as: Appl. Phys. Lett. 117, 031107 (2020); doi: 10.1063/5.0009430
Submitted: 30 March 2020 • Accepted: 4 July 2020 •
Published Online: 24 July 2020

Shyam Bharadwaj, Kevin Lee, Kazuki Nomoto, Austin Hickman, Len van Deurzen, Vladimir Protasenko, Huili (Grace) Xing, and Debdeep Jena

ABSTRACT

A recent thrust toward efficient modulated light emitters for use in Li-Fi communications has sparked renewed interest in visible III-N InGaN light-emitting diodes (LEDs). With their high external quantum efficiencies, blue InGaN LEDs are ideal components for such devices. We report a method for achieving voltage-controlled gate-modulated light emission using monolithic integration of fin- and nanowire-n–i–n vertical FETs with bottom-tunnel junction planar blue InGaN LEDs. This method takes advantage of the improved performance of bottom-tunnel junction LEDs over their top-tunnel junction counterparts, while allowing for strong gate control on a low-cross-sectional area fin or wire without sacrificing the LED active area as in lateral integration designs. Electrical modulation of five orders and an order of magnitude of optical modulation are achieved in the device.

Visible light-emitting diodes (LEDs) based on the Indium Gallium Nitride (InGaN) material system have emerged as fundamental components in micro-LED display technology, car headlamps, and cell phone backlighting, among other lighting applications. More recently, interest in InGaN LEDs has spread beyond lighting applications toward a different area—light fidelity (Li-Fi) communications—due to the promise of faster and more secure data transmission compared to conventional Wi-Fi. InGaN LEDs are attractive for such applications due to their preponderance in lighting and also due to their high external quantum efficiencies (EQEs) in the visible spectral range—a range that is >2000× larger in bandwidth than the entire RF spectral range and the one that is currently underutilized.

In order to use LEDs for Li-Fi communications, high speed modulation of the LED light output is desirable. This modulation is achieved with the use of a current or voltage driver. In the GaAs semiconductor family, heterojunction bipolar transistors (HBTs) have been redesigned epitaxially into LEDs and even laser diodes (LDs) for current driven operation. Although the Nitride semiconductor family allows for visible to UV emission wavelengths and higher power operation, to realize HBT-LEDs or HBT-LDs similar to GaAs requires the quantum well (QW) active region to be placed inside p-type base layers, which are rather resistive and problematic for contact formation. Voltage-driven control methods involve simpler control schemes and offer more flexibility than current-driven methods. Using GaN FETs directly integrated on the LED for voltage driving can take advantage of a single epitaxial step and the excellent performance demonstrated by vertical GaN FETs. Toward this end, integration of GaN-based FETs and LEDs on the same epi-wafer can enable high power and high efficiency voltage-controlled modulated visible light emission while eliminating interconnects and reducing the overall device footprint. Previous demonstrations integrating III-Nitride FETs and LED structures on the same epi-wafer for these applications involve lateral integration of High Electron Mobility Transistors (HEMTs) with the LED or vertical integration through a top-down full nanowire platform. However, both strategies limit the LED active area on the wafer; the former strategy requires removing the LED epi from certain regions of the wafer (and in certain processes, an additional regrowth step to define the LED structure). The latter constrains the LED active volume down to the size of a gate-controllable nanowire, severely limiting the optical output power. The strategy demonstrated in this work offers a solution to both problems by integrating nanowire and fin vertical n-FETs on large-area planar LEDs.
through top-down fabrication on a heterostructure that is realized in one epitaxial stack. This approach allows for strong all-around gate control on the relatively low cross-sectional area FETs, while allowing large area LEDs that take advantage of the on-wafer area for high output power.

In order to vertically integrate nanowire- or fin-n-FETs with planar LEDs, the wires or fins must sit on top of the planar LED. This requires the top layer of the LED to be n-GaN rather than p-GaN. A tunnel junction (TJ) LED is required if conventional n-GaN substrates are used. This particular demonstration uses bottom-TJ homojunction LEDs, which have been shown to outperform standard top-TJ LEDs in terms of wall-plug efficiency, LEDs, which have been shown to outperform standard top-TJ LEDs.

Optical microscope images after the MBE growth showed Ga metal droplets on the surface, confirming the metal rich growth condition. After removing the droplets with HCl, structural characterization was performed through x-ray diffraction (XRD) and atomic force microscopy (AFM), with the results shown in Figs. 2(a) and 2(b), respectively. The XRD shows that the InGaN cladding composition in the LED is 13%, and the AFM shows a smooth surface (with a root mean square roughness of \(\sim 0.6\) nm). After performing structural characterization, the sample was processed into devices consisting of various numbers of vertical n-FET nanowires or fins of varying dimensions on top of \(55\times55\) \(\mu\)m\(^2\) LEDs, in a similar manner to other GaN and Ga\(_2\)O\(_3\) vertical FETs. A schematic of a processed nanowire LED FET is shown in Fig. 1(b). First, 55 \(\times\) 55 \(\mu\)m\(^2\) LED areas were isolated through inductively coupled plasma reactive ion etching (ICP-RIE) down to the n-GaN nucleation layer. Next, nanowires and fins were defined on the mesa surface through electron beam lithography (EBL). The etch process for nanowire/fin definition consisted of first an ICP etch (using Cr/Pt as an etch mask as well as a top source contact) followed by a wet etch in AZ400K to make the sidewalls vertical for efficient lateral gating [see Fig. 1(c)]. The fins were defined with the long edge along the m-plane direction in order to allow for adequate wet etching. Then, SiO\(_2\) was deposited by atomic layer deposition (ALD) as a gate dielectric for the nanowire/fin FETs. Next, Cr was sputtered as the sidewall gate metal, followed by e-beam evaporation of large Cr/Au/Ni pads for electrically contacting the gate. The undesired sputtered Cr above the source contact of the fins and wires was etched away after a planarization process, after which SiO\(_2\) was blanket deposited by plasma-enhanced chemical vapor deposition (PECVD).

![FIG. 1. (a) Epitaxial layer structure for the Light-Emitting FET (LEFET). The structure consists of a vertical n–i–n GaN FET sitting above a bottom-TJ homojunction InGaN LED. (b) Schematic of a fabricated nanowire LEFET structure, showing source, gate, and drain contacts for biasing the device, and dielectrics for isolation. (c) SEM image showing submicrometer nanowires with vertical sidewalls after wet etching, before removing the etch mask. (d) Circuit level schematic of the LEFET.](https://www.scitation.org/journal/apl)
to isolate the rest of the sidewall gate metal. This SiO$_2$ was then planarized to again expose the Cr/Pt wire/fin source contact, after which thick source pads (Ti/Al/Pt) for probing were deposited. Gate isolation for the FET wires/fins between different devices (which still had their gates shorted together by the sputtered Cr at this point) and contact holes for the thick gate pads was realized together with an SiO$_2$ etch followed by a Cr etch. Finally, a Ti/Al/Pt back contact was deposited with a window left free of metal for collecting light from the back side. After device processing, electrical and optical measurements were performed, with the results for a 500 nm \times 50 μm single-fin depletion-mode device shown in Figs. 3 and 4, respectively. Compared to the multi-fin/wire devices, the single fin/wire devices showed lower gate leakage current and higher on/off ratios due to the reduced gate area. Circular transfer length method (cTLM) measurements shown in Fig. 3(a) reveal low contact and sheet resistances of 9.34 \times 104 Ω cm2 for the top source contact and 185 Ω/sq for the n$^+$GaN contact layer underneath, resulting in negligible voltage drops across these regions. I_{D}-V_{G} and I_{D}-V_{D} measurements on the 500 nm \times 50 μm single-fin device are shown in Figs. 3(b) and 3(c), respectively, with current density values shown on the plots normalized to the area of the fin FET. From the I_{D}-V_{G} curve in Fig. 3(b), an on/off ratio of \approx5 orders is observed up to V_{DS} = 4 V, with gate leakage current low in all cases (below \sim100 pA). The on current increases with increasing V_{DS} as expected due to the turn-on of the LED pn diode. The I_{D}-V_{D} measurements in Fig. 3(c) show that between V_{G} = 0 V and V_{G} = -6 V, a two order gate modulation of the on current is achieved at V_{DS} = +5 V. Figures 3(c) and 3(f) depict the energy band diagrams of the LEFET device in the on and off states, respectively, when biased in a manner applicable for Li-Fi purposes: modulating V_{G} with fixed forward bias V_{DS}. In ideal operation,
electrons are injected into the LED portion of the device from the transistor source only when V_G is switched to a sufficiently high positive voltage.

The measured electroluminescence (EL) spectra are shown in Fig. 4, demonstrating the optical modulation enabled by the FinFET. Figures 4(a) and 4(b) show the effect of the drain voltage on the emission spectra on linear and log scales for the 500 nm × 50 μm single fin device at a fixed $V_G = 4$ V for V_{DS} between 10 V and 13 V. With larger V_{DS}, more light is emitted from the device due to a larger forward bias appearing across the LED portion of the device. V_{DS} used here is higher than that in the electrical measurements due to the limited sensitivity of the optical detection setup used for this work. The emission peak appears at 469 nm, consistent with a 17% average Indium composition in the QWs.

Figures 4(c) and 4(d) demonstrate the desired modulation of the EL spectra through gating of the GaN FinFET. At a fixed $V_{DS} = 13$ V, varying V_G from $+4$ V to $+1$ V results in a reduction of EL intensity by a factor of 10. Larger on/off modulation ratios are achieved at lower V_{DS}, although the optical measurement apparatus used is not sensitive enough to measure them. Gate control is limited at these high V_{DS} values at which light can be collected by the detector due to the high gate–drain field. The brightness of the LED at lower V_{DS} can be drastically increased through the use of a heterojunction GaN/InGaN/GaN buried tunnel junction rather than a homojunction, leading to a lower series resistance, as demonstrated in previous work.25 Such devices show strong EL at current densities of ~ 1 kA/cm2 (corresponding to ~ 5 V)—a V_{DS} voltage/field at which the FET portion of this device shows ~ 5 orders of on/off ratio. Additionally, increasing the thickness of the n$^+$-GaN layer between the fin-FET and planar LED active region will enhance current spreading, increasing optical output power.

For visible light communications, switching speed is an important parameter that dictates data transmission rates. The optical switching speed of the device was measured by switching V_G with V_{DS} fixed at 10 V and tracking the output signal from a photodiode placed directly underneath the device using an oscilloscope. A square voltage pulse with a duty cycle of 50% was used as the input signal on the gate, with the frequency varying between 1 kHz and 100 kHz. The input electrical signal (black) and output photodiode voltage signal (red) are shown in Fig. 5 for frequencies of 10 and 30 kHz. Limitations of the optical collection setup result in a low signal to noise ratio, and so a Savitzky–Golay filter was used after collecting the data to reduce the noise in the photodiode output signal. The device maintains an optical switching response up to 30 kHz, beyond which the optical response flattens out. Although this modulation proves the feasibility of the LEFET for direct voltage modulation of light, the current design of the device geometry is not optimal for the much higher speeds necessary. Future designs will require careful control of the UID GaN thickness and the sidewall gate dielectric and the resulting gate capacitance to enhance the gate-voltage modulation speed of the optical output power.

We have demonstrated a technique for achieving monolithic integration of n-FETs and LEDs, using vertical fin- and nanowire-FETs and bottom tunnel junction planar blue LEDs. This platform allows for strong gate control (5 orders of magnitude on/off for I$_D$) without limiting the on-wafer LED active area and does not require regrowth. Optical switching behavior up to 30 kHz is demonstrated in the first prototype, with room for improvement through the use of InGaN heterojunction TJs. The LEFET device geometry can be easily modified for light extraction from the surface without sacrificing significant wafer area by patterning the top source contact. Such devices are promising for use in Li-Fi communications and in micro-LED displays, in which gate voltage controllability and utility of space are important parameters. The technique described here can be applied to integrate vertical fin-FETs with laser diodes, enabling efficient directional Li-Fi emitters among other technologies.

This work was supported in part by the following National Science Foundation (NSF) grants: NSF DMREF Award No. 1534303 monitored by Dr. J. Schlater, NSF Award No. 1710298 monitored by Dr. T. Paskova, NSF CCMR MRSEC Award No. 1719875, and NSF RAISE TAQs Award No. 1839196 monitored by Dr. D. Dagenais. This work made use of the shared facilities that are supported through the
REFERENCES

