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Abstract— Power and RF electronics applications have
spurred massive investment into a range of wide and ultraw-
ide bandgap semiconductor devices which can switch large
currents and voltages rapidly with low losses. However,
the end systems using these devices are often limited by the
parasitics of integrating and driving these chips from the
silicon complementary metal–oxide-semiconductor-based
design (CMOS) circuitry necessary for complex control
logic. For that reason, implementation of CMOS logic
directly in the wide bandgap platform has become a way for
each maturing material to compete. This review examines
potential CMOS monolithic and hybrid approaches in a
variety of wide bandgap materials.

Index Terms— AlN, complementary metal–oxide-
semiconductor-based design (CMOS), diamond, GaN,
SiC, wide bandgap.

I. INTRODUCTION

THE fields of power and RF electronics, which
assume ever-increasing importance in a highly con-

nected and energy-efficient future, meet stringent specifica-
tions by demanding smaller, faster, more conductive, and
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higher-voltage transistors. Silicon, based on its natural abun-
dance, massive economies of scale, and an extensive history
of painstaking study and manufacturing maturity, has long
been the semiconductor of choice. But while silicon power
devices continue to wring every ounce of performance from
the material, many applications have begun incorporating
wider-bandgap semiconductors. The large voltage-handling
capacity of these crystals allows them to exceed the material
limits of silicon in the tradeoffs of ON-resistance, breakdown
voltage, and capacitances.

But, these advances come at a cost: for the most part,
the monolithic integration of control circuitry, common
in silicon “smart power ICs” [1], has proven difficult in
other materials. The inferiority or absence of complementary
(nMOS/pMOS) processes in high-power materials has been a
major barrier to their adoption [1], as systems designers must
either:

1) Combine external control/driving circuitry in silicon
with their wide bandgap power transistors, increasing
system complexity, introducing further parasitics and
reliability concerns, and often limiting overall perfor-
mance [2], [3].

2) Or control the power transistors from monolithic circuit
topologies limited to noncomplementary devices [4].

The preference for complementary metal–oxide-
semiconductor-based design (CMOS) stems from its many
advantages as a logic family, such as high input impedance,
high fan-out capability, and simple driving, thanks to the
gate oxide; low static power consumption and near rail-to-rail
swing due to the complementary pair structure [5], [6]; and,
finally, high device density and compatibility with memory
devices. Even outside digital design, a variety of circuits
can be enhanced or simplified by complementary devices,
e.g., using active-load architectures [7], or leveraging the
flexibility to switch on either high-side or low-side [8].

Axiomatically, circuit designers will find a way to work with
what they have. For example, where pMOS is not available,
but both enhancement- and depletion-mode nMOS devices
are integrated, as in some GaN processes, direct-coupled
FET logic (DCFL) has proven a popular substitute [9], [10]
for CMOS, see Fig. 1. Nonetheless, a systems-level analysis
of these competing logic families with highly imbalanced
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TABLE I
COMPARISON OF SILICON WITH WIDE AND ULTRAWIDE MATERIALS AT ROOM TEMPERATURE

Fig. 1. Basic inverter structure in three relevant MOS logic families
(nMOS, DCFL, and CMOS) indicating which transistors are required.

complements is outside the scope of this device-level review.
So, although wide bandgap ICs could vary in architecture [11],
this work focuses specifically on prospects for CMOS within
different wide bandgap material platforms. The review should
familiarize the reader with the status of monolithic and het-
erogeneous CMOS options ranging from wide bandgap SiC
and GaN to ultrawide-bandgap diamond.

A. Device Scope

Vertical devices, that is, structures with contacts on both
the top and bottom of the epitaxial layers, have dominated the
high-power-density discrete market in silicon and silicon car-
bide [12]. In a vertical device, roughly the full semiconductor
volume is available for current flow, as opposed to laterally
oriented devices where, generally, current flows only near the
epitaxial surface, thus “wasting” much of the volume. Even in
GaN, where lateral devices are far more mature than vertical
counterparts, these advantages are motivating the development
of extremely high-voltage vertical devices [13]–[15].

However, for intimate integration of power devices and
controls, when connection parasitics must be reduced for
high operating frequencies, lateral devices are preferred (at
least within the control circuitry) because of their compat-
ibility with standard integrated circuit layout [1]. On-chip
interconnects offer better reliability and performance than
the combinations of wirebonds, bumps, traces, solder, etc.
which would form a complete system from standalone parts.
This allows operation at higher frequencies, enabling the
size reduction of the large reactive elements. (Additionally,
lateral GaN devices are available on silicon for scalability

and economy.) Thus, lateral devices will be the focus of this
work (though it should be noted this does not rule out the
integration of lateral CMOS control with a vertical power
element, e.g., [16]).

B. Material Scope

A quick reference of some relevant parameters at room
temperature for the materials touched on here is provided
in Table I. All numbers, no matter how specific, should be
taken as general ranges, since material quality, measure-
ment technique, device structure, temperature, and operating
regime all play a large role in the applicability of these
numbers. However, some aspects jump out immediately. SiC
MOS is the most n-/p-balanced of the 3-D materials; GaN,
with its high-mobility two-dimensional electron gas (2DEG),
is the most n-favored, and diamond is the most p-favored,
particularly with hydrogenation. The AlN buffer platform
may improve the thermal performance of GaN high electron
mobility transistors (HEMTs), but both GaN and SiC pale in
comparison to diamond, which also tops out the critical field.
These factors will come into play in the sections to follow.

II. SILICON CARBIDE

Silicon carbide will be discussed first, as it is the only
wide bandgap material system where CMOS is not merely a
tantalizing possibility, but already an established platform with
complex digital circuit demonstrations and extreme-condition
reliability studies. Other candidate materials may benefit by
understanding how SiC marketed and matured in this area.

Silicon carbide LED the way as the first wide bandgap semi-
conductor to reach commercial maturity, and it is projected
that, even as other materials catch up, many of the applications
demanding the highest voltage-blocking capability will make
use of SiC vertical power devices. Development of lateral
SiC ICs traces to at least the mid-nineties, including early
development at Cree [31] and Purdue [32]. From the start,
this field has almost universally emphasized high-temperature
operation [33] as the main selling point. Given the low mobil-
ities and operating frequencies [34] characteristic of lateral
SiC MOS technology, the main push has been to go where
silicon cannot. High temperature silicon with derated lifetimes
can operate up to 200 ◦C, while high temperature silicon-
on-insulator (HTSOI), for instance, caps out at ∼300 ◦C
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for short-term operation, and <250 ◦C for longer exposure
[33, Table 61.2]. This cedes an enormous operating range
(of interest to the automotive, aerospace, and energy indus-
tries), accessible only to wider-gap materials. While the wide
bandgap allows low-intrinsic leakage up to high temperatures,
the high thermal conductivity of SiC [20] gives it an additional
leg up in this front over its frequent rival, gallium nitride. In
terms of raw operating temperature alone, the most impressive
ICs are NASA’s JFET circuits, which have demonstrated
year-long operation at 500 ◦C [35], and operation over a
1000 ◦C wide range [36]. Such performance is critical for
the extremes typical in space exploration, with targets such
as operation on Venus. Researchers have also studied other
oxide-free devices in order to enhance high-temperature reli-
ability [37].

SiC MOS devices, however, have tougher barriers to over-
come. The main obstacle has been the low inversion-channel
mobility and high interface trap-density at the SiC-oxide
interface, as reviewed by Cabello [21]. Among the three
popular SiC polytopes (3C, 4H, 6H), 3C-SiC is known to
host the highest-quality interface to SiO2 (showing Dit <
1011/cm2/eV and mobilities on the scale of 200 cm2/Vs
with standard dry oxidation [38]), but its lower bandgap and
defective bulk epitaxial quality limit commercial adoption.
As for the remaining two polytopes, 4H–SiC is preferred
for power devices given its higher bulk mobility and slightly
higher bandgap [23], even though 6H-SiC shows higher MOS
inversion channel mobility under similar processing [39];
accordingly, CMOS has been demonstrated on both these poly-
topes. At present, the standard for nMOS inversion channel
mobility is 25–35 cm2/Vs, typical of 4H–SiC oxides with
nitridation [21]. Techniques such as diffusion of other elements
into the oxide have shown promisingly high mobilities in the
100–200 cm2/Vs range, but concerns remain about reliability
for high-temperature operation, which is precisely where SiC
needs to perform. Other work has indicated the advantages
of alternative crystal orientations for higher mobility on the
scale of 100–200 cm2/Vs [38], and, while these have been
adopted for vertical SiC devices, e.g., [40], the implications for
a lateral CMOS layout have not been detailed. Buried-channel
devices, distancing the carriers from the gate, have also been
explored with success [41], [42] in increasing the mobility
to 100–200 cm2/Vs range, though at the expense of signif-
icant transconductance reduction and more difficult design
constraints to establish normally OFF behavior.

For the time being then, lateral SiC nMOS remains a far cry
from the roughly 500 cm2/Vs available in Si/SiO2 interfaces
and the 1500–2000 cm2/Vs typical of GaN/AlGaN 2DEGs.
A peculiar side-effect of this weakness is that it places SiC
nMOS and SiC pMOS on comparable footing, where typical
SiC pMOS mobilities of 7–10 cm2/Vs [5] are only worse
than nMOS by a factor of 3–4, not terribly different from
long-channel CMOS. This achieves a relatively unique level
of “balance” compared to other wide bandgap platforms.

Narrowing our focus specifically to monolithic CMOS, there
are first a handful of early exploratory demonstrations [32],
[43] which laid the groundwork on topics such as reducing the
magnitude of the pMOS threshold voltage. Research continues

Fig. 2. (a) Technology cross section of Raytheon’s HiTSiC process as
in [45]. Note that details may vary, e.g., Weng et al. [45] and Murphree
et al. [46] describe body contacts and the substrate differently. (b) I–V
characteristics of a 1.2-µm pMOS and nMOS at 25 ◦C and 300 ◦C (data
[46] renormalized to device width).

on optimization to best match n- and p-channel devices
given the different doping-dependent mobilities and dopant
activation energies involved [34]. To tune appropriately low
threshold voltages (e.g., for 5 V logic), precise control over
low doping levels is necessary, which means extremely pure
epitaxial material or further tuning with counter-dopants [44].

The state of the art is set by Raytheon U.K. with their
1.2-μm HiTSiC process, which, at some generations, employs
two separately doped n- and p-wells on n+ 4H-SiC epi, see
Fig. 2, to target operation at 15 V levels in 300 ◦C-and-up
environments [45]. Devices with 2-μm gate lengths for analog
operation have been published showing nMOS (pMOS) ON-
currents in the 60 mA/mm (20 mA/mm) scale over a range
from 100 ◦C to 400 ◦C. Devices with 1.2-μm gate lengths
for digital operation show nMOS (pMOS) ON-currents on
the scale of 150 mA/mm (40 mA/mm) at 300 ◦C [46], see
Fig. 2(b). Threshold voltages are set large at room temperature
(e.g., n: 4.65 V, p: −6.04 V in [47]) to allow margin for
significant decrease at high temperature. Much of that shift
occurs from 25 ◦C to 100 ◦C; once above 100 ◦C, both nMOS
and pMOS stay within 1.5 V of their eventual 400 ◦C values of
±2 V [47]. Modeling the large temperature dependence of the
thresholds should account for not only the intrinsic MOSFET
physics [19], but also the temperature-dependent interface trap
distributions [48]. Using this technology, researchers have
demonstrated numerous circuit designs, including timers [47],
multiplexers [47], hybrid power module controllers [45], and
other complex digital circuits [49], [50] operating at 300 ◦C
and above, including the first digital analog converter (DAC)
operational at 400 ◦C [51]. While less information is available
in the public literature about other players, Raytheon is not
the only corporation to invest in SiC CMOS. Hitachi, for
instance, has emphasized developing a radiation-hard technol-
ogy for nuclear plant applications—especially in the wake of
the Fukushima disaster—and has demonstrated the irradiation
performance of an op-amp [52], [53] and a trans-impedance
amplifier [54]. While the mobilities (n: 5 cm2/Vs, p: 3 cm2/Vs
[54]) are substandard, the radiation survivability is a strong
selling point.
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Many challenges remain to be solved, the first being the
poor oxide interface discussed above. Other difficulties stem
from the fact that the main p-dopant, aluminum, is a relatively
deep acceptor, so source/drain regions are highly resistive at
room temperature. On this point, Albrecht et al. [44] explained
that the source–drain resistances are critical enough to alter
the designed n/p width ratios. (This problem lessens at high
temperature due to increasing aluminum acceptor activation,
but the trend that p-source/drain resistances are an order
worse than n-source/drain resistances holds at room [45] and
high-temperature [47]). The dopants also introduce further
process challenges: the anneal after ion implantation requires
temperatures of roughly ∼1700 ◦C. With that thermal budget,
the contacts must be implanted and annealed prior to gate
formation, which eliminates the simplicity of traditional (gate-
first) self-aligned gates. On that front, other researchers have
suggested epitaxial contact doping combined with recesses,
which eases the thermal budget significantly [5]; further work
is required to establish whether these devices can reach similar
performance. Meanwhile, other design challenges, such as
movement of threshold voltage with temperature, may have
to be compensated in circuit design. Nonetheless, the low
intrinsic carrier concentration, high thermal-conductivity, and
high breakdown of SiC have found a home in the world of
extreme-environment, point-of-operation control. As the first
wide bandgap system to achieve nontrivial CMOS circuits,
and to demonstrate operation in application-relevant stressful
environments, SiC is a fine role model for other budding wide
bandgap CMOS contenders.

III. GALLIUM NITRIDE

Unlike SiC, there is no production GaN CMOS at present.
Therefore, it makes sense to first discuss each complement
separately, starting with the n-channel. GaN HEMTs, having
demonstrated their mettle in the RF market, are steadily
breaking into the power market with numerous companies
offering production devices [55]. HEMTs are based on the
AlGaN/GaN heterostructure, which, due to a polarization
difference and band offset, is able to confine a 2DEG
channel at the high-quality epitaxial interface, rather than a
semiconductor-oxide interface. This distinguishes the device
in two ways from a classic MOSFET.

1) Typical gate stacks feature metal directly on the
epi surface, with the wider-gap AlGaN serving as a
barrier (although depletion-mode insulated-gate GaN
“MOSFETs/MOSHFETs” are also commercial-
ized [56]).

2) The baseline device is depletion-mode given the large
positive polarization charge present. Nonetheless, vari-
ous techniques such as gate recesses [57], [58], fluorine
implantation [59], [60], castellation/tri-gates [61]–[63],
and most popularly p-(Al)GaN gates [15], [64] have
demonstrated enhancement mode operation [65], with
the latter commercialized [15], [66]. Enhancement-mode
devices targeting power applications offer output cur-
rents in the hundreds of mA/mm range with breakdowns
in the hundreds of volts [58], [60], [64], [67]. Despite
the variation between different approaches for most of

Fig. 3. III-nitride heterostructures which induce a 2DHG. Purely p-GaN
approaches (e.g., [71]) are not included.

these research-level devices, they distinctly outperform
the lateral SiC nMOS devices above, and given the
amount of review work in this area [15], [55], [65],
the potential for this n-channel technology needs no
further elucidation.

On the p-channel side, the choice of heterostructure mate-
rials is itself still wide open. The difficulties include 1) deep-
energy acceptors (magnesium at a level of 100–200 meV [68]);
2) difficult ohmic contacts due to the deep valence bands [69];
and 3) low-mobility/high-mass holes [70]. Researchers have
partially circumvented that first challenge, doping, by using
the material polarization instead to induce a hole gas: just
as a metal-polar AlGaN-on-GaN interface provides a positive
fixed sheet charge, a flipped GaN-on-AlGaN (still metal-
polar) interface provides a negative fixed sheet charge. Since
the sheet charge has the periodicity of the lattice, it attracts
holes without scattering them. And since the polarization
charge has no Fermi-level dependence, it does not screen
the gate fields, thus avoiding the unsavory electrostatics [71]
of deep acceptors. Researched heterojunctions that should
induce a 2D hole gas (2DHG) include (metal-polar) GaN/AlN,
GaN/AlGaN, InGaN/GaN, and (nitrogen-polar) AlGaN/GaN.
Fig. 3 indicates the variety studied. Many of these structures,
depending on the details of doping and thicknesses, may also
host electron gases, and most that do not, with the notable
exception of GaN/AlN, seem to (in practice) require some
(potentially moderate) amount of doping in order to manifest
the hole gas [25].

The second challenge for these structures is ohmic contacts.
While many of the works do not report contacts directly,
Schottky nature is often evident in the output characteristics.
Among the best thus far, contacts on the order of a few
� · mm can be achieved by heavily doped InGaN layers
atop the high density (4–5×1013/cm2) hole gases of GaN/AlN
[72]. Presently incorporating less than 10% of Indium, this
p-contact technique could be pushed further, as explored in
the context of LEDs [73]. However, to differentiate structures
for contact, access, and/or gate regions is still a thorny process
given the difficulty of ion implantation in GaN. Whereas
n-type regrowth is highly developed for HEMT ohmic contacts
[74], p-type regrowth arguably has the added constraint of
needing to preserve or recreate the delicate hole gas, at the
risk of reducing the local conductivity. And whereas gate
recesses are a studied technique in HEMTs, the requirements
for the etch are even more stringent in p-channel devices
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Fig. 4. (a) Mobilities and densities reported for a variety of 2DHG-
hosting III-nitride heterojunctions [3], [25], [77]–[90]. For fair inclusion
of superlattice structures, vertical lines indicate both the total hole
charge (top) and the normalized charge-per-period (bottom). Circles are
metal-polar structures, diamonds are nitrogen-polar. (b) ON-current (at
fixed 5 V drain) and ON–OFF ratio for of III-nitride p-channel platforms
[3], [72], [77]–[81], [83], [85], [86], [88], [89], [91]–[95]. Solid shapes are
enhancement-mode, hollow are depletion-mode, and squares represent
(width-normalized) tri-gate devices. Devices with ON-currents below.
1 mA/mm are not shown.

since plasma etching induces nitrogen-vacancy (donor-like)
defects [75]. Refinement of etching processes or, depending on
the structure, use of combined sublimation [76] and regrowth
techniques may prove critical in forming differentiated regions
for low-resistance contacts and high-control gates.

The third limitation, mobility, is fundamental to the crys-
tal [70]. Various reports on different heterostructures have
yielded different 2DHG densities (dependent on the polar-
ization charge) and mobilities, as shown in Fig. 4(a), with
the lattice-matched GaN/AlInGaN structures currently holding
the mobility record, and the GaN/AlN interface hosting the
most charge (per a single junction), at a reasonable mobility.
The mobilities evidenced on the scale of 10–30 cm2/Vs
agree nicely with theoretical predictions of the intrinsic
phonon-limited hole mobility around 34 cm2/Vs computed for
a GaN/AlN 2DHG [28] and 50 cm2/Vs for bulk [70]. The
source of the low mobility is the band-edge availability of the
heavy hole (HH) band (with its high effective mass, i.e., high
density of states (DOS) for both heavy and light holes (LHs)
to scatter into). However, it may be possible to improve the
situation to some extent by strain engineering, either with
biaxial tension [70] to raise the split-off band or in-plane
uniaxial strain to break the heavy/light-hole degeneracy [28],
[96], [97], with idealized effects estimated to boost mobility
to 60–120 cm2/Vs. There is some exciting albeit limited
experimental support for the latter approach [98].

Despite these challenges, significant progress has been made
in recent years. P-channel ON-currents have been reported
up to the 100 mA/mm range for both the GaN/AlN HFETs
(ON-resistance near ∼70 �·mm) [72] and the GaN/AlGaN
fin-HFETs [79]. Modulation ratios up to 108 have been evi-
denced for the lattice matched GaN/AlInGaN devices. A vari-
ety of enhancement and depletion mode devices are compared
in Fig. 4(b), where it seen that the highest ON-current levels
are so far provided by the GaN/AlN approach, and the cleanest

Fig. 5. Inverter dc characteristics from four groups. (a) HRL [3] employed
regrowth to separately tune the p-channel epi, while (b) AIST [93] and
(c) RWTH [99] used epi with both a 2DEG and a 2DHG then etched
the 2DHG away for recessed E-mode devices, and (d) MIT [95], [100]
designed the epi so the p-layer can serve as an E-mode p-GaN gate for
the n-channel device.

device quality from the quarternary approach. Multiple insti-
tutes have demonstrated monolithic CMOS inverter operation;
four such integrations are described in Fig. 5. A cursory exam-
ination of the inverter characteristics reveals there is much
further to go. In addition to the obvious matching constraints,
integrating two devices with different process requirements
can damage one or the other [99], resulting in significant
leakage or and/or heightened resistance which prevents rail-
to-rail switching. Etch-based tuning of one (or both) separate
threshold voltages can be either imprecise or insufficiently
enhancement-mode, also preventing the achievement of cen-
tered rail-to-rail characteristics. Incorporation and refinement
of more precise atomic-layer etching, use of additional thresh-
old tuning mechanisms [93], and continued development of
lower resistance p-channel devices will go a long way toward
improving these inverters.

Given the interest in ultrawide bandgap electronics specifi-
cally, it is worth highlighting the role that AlN could play in
a III-nitride CMOS setting. As discussed above, the GaN/AlN
interface is a highly promising candidate for a p-channel
device wherein the massive polarization difference results in
an enormous degenerate hole gas (Fermi level nearly 50 meV
into the valence subband at wavevectors of ∼1.5 nm−1).
This gives high contactability with tight scalable confinement
for suppression of short-channel effects, with the AlN buffer
also providing a high thermal conductivity path for heat
extraction. An n-type complement based on the AlN platform
is also under study: the AlN/GaN/AlN heterostructure with a
thin GaN channel (“Quantum Well HEMT” or “AlN Buffer
HEMT”) [101], [102]. The bandgap of AlN provides a large,
thin barrier, and since the buffer is also AlN, the barrier is
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Fig. 6. Band diagram of a QWHEMT (AlN/GaN/AlN + GaN cap),
showing the 2DEG and 2DHG separated across a high-field GaN well.
Insets show the 2DEG occupying the first subband (CB1), and the 2DHG
occupying the first subbands of the HH and LH bands.

under far less strain [103]. The backbarrier provides a high-
thermal-conductivity, electrically-insulating support, as well as
tight confinement from the large polarization fields and, with
a thin channel, a boost to the breakdown field [27]. These
effects have been combined to demonstrate high-breakdown
AlN HEMTs with short gate lengths for high-frequency per-
formance [26]. Despite the present lower mobility of these
structures (∼700 cm2/Vs, [104], [105]) versus established GaN
HEMTs, the performance has been impressive and develop-
ment continues. Interestingly, like the GaN/AlGaN/GaN het-
erostructures above, these AlN/GaN/AlN structures host both
a 2DEG and a 2DHG, and both have been demonstrated to be
active [106], [107], with the barrier between them formed by a
polarization Stark effect rather than a band-offset, as illustrated
in Fig. 6. Studies to integrate n- and p-channel devices are
underway, and the proximity of high-density electron and
hole gases could enable other interesting device concepts,
e.g., in lighting, which could coexist in a complementary
electronics platform.

As compared to lateral SiC CMOS, GaN CMOS is clearly
the more immature, but may have certain advantages. Since
the channels can reside at an epitaxial interface rather than
a dielectric interface, higher mobilities are possible; GaN
HEMTs solidly outperform SiC lateral nMOS, and GaN
p-channel devices are comparable to SiC lateral pMOS (but
with a great deal more margin for improvement). SiC’s
thermal conductivity advantage [20] over GaN will prefer-
ence it toward the higher temperature applications, though
this margin could be diminished substantially by employing
higher-thermal conductivity AlN as the buffer (i.e., in the
GaN/AlN heterostructure). What application range would ben-
efit from Schottky-gated versus MOS-gated GaN structures
(since both are a possibility in Fig. 5) remains to be seen as
the improved robustness of dielectric-free designs will trade
against increased leakage particularly at high temperatures
[90]. Overall, it is possible that SiC and GaN CMOS could
divide the market (in frequency versus power requirements) as
SiC and GaN n-channel devices have already done.

IV. DIAMOND

Diamond, as an ultrawide bandgap material, further scales
the GaN/SiC potential for high-temperature and high-power

Fig. 7. Diamond p-channel devices and GaN n-channel HEMTs could
conceivably be integrated by either (a) bonding GaN onto a diamond tem-
plate as in [121] or (b) growing diamond on a GaN HEMT template [128].

operation, but makes an unusual entry into this list as its
difficulties are somewhat complementary. In diamond, while
p-type doping is natural (albeit inefficient with boron at an
acceptor level of 0.37 eV) it is n-type doping that has proven
difficult [29], [108] with phosphorous a deep donor at 0.57 eV.
Though there have been recent advances via methods such as
boron-oxygen complexes [109], n-type performance is yet to
be fully assessed. Meanwhile, p-type transistors in many forms
are a well-demonstrated research-level technology [29].

Two ways of inducing holes should be distinguished.

1) Conventional doping can produce high-mobility carriers
(in the thousands of cm2/Vs) of both signs at low
doping levels. However, producing large concentrations
requires enormous doping densities, so ohmic contacts
are challenging, whether contacting direct epi [110] or
providing regrowth [111], and temperature sensitivity
with a high-activation-energy dopant is drastic. However,
this approach can maintain channels nearer to the large
bulk hole mobility of diamond, and breakdown (without
field-shaping) has been shown at effective averaged
fields of 4 MV/cm [110], already well beyond typical
results of GaN/SiC.

2) Alternatively, hydrogenating the diamond surface pro-
duces a 2DHG at high density ∼ 1013/cm2, albeit
lower mobility of ∼50–150 cm2/Vs [30], which can be
stabilized to roughly 500 ◦C by dielectric passivation
[30], [112] and contacted by TiC annealed metalliza-
tion [113]. This combination of mobility, temperature
range, and high breakdown field promises diamond an
eventual niche in high-power switching. Hydrogenated
diamond has already demonstrated medium [114] and
high-voltage devices with averaged fields exceeding
1–2 MV/cm [112], [115], [116] and lower voltage
devices exceeding 3 MV/cm [115]. Toward integra-
tion, DCFL logic gates have been demonstrated [117].
Continued design exploration, e.g., fins in both the
volumetric [111] and hydrogenation [118] approaches,
should keep pushing the envelope.

However, given the dearth of diamond n-channel devices
and the present limitations of diamond substrates [119], dia-
mond may wish to join forces with a system like GaN [112],
where mature high-performance n-channel devices are yet
to mate with high-voltage p-channel devices, as in Fig. 7.
Thanks to the high-power output of GaN devices, researchers,
and corporations such as TriQuint/Qorvo and Mitsubishi have
long tried to bring a high-thermal-conductivity insulator like
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diamond into proximity with the GaN transistor, whether by
growing GaN on diamond [120], bonding GaN films to dia-
mond [121], [122], growing diamond on the backside of a GaN
film [123]–[125], or depositing nanocrystalline diamond on
partially processed GaN structures [126]. P-type diamond can
also provide electrostatic design advantages to GaN HEMTs
[127]. Taking one step closer to CMOS integration, EPFL
[128] has recently demonstrated p-channel devices grown on
GaN-on-Si templates with 60 mA/mm ON-currents and nine
orders of on–off modulation. While the ON-resistance is higher
than the best of state-of-art p-type GaN HFETs (mostly due
to the low-mobility of the holes 1.3 cm2/Vs on the rough
diamond-on-GaN surface), the 400-V breakdown and high
gate control in this first attempt demonstrate a promising
potential technology to unite the best of these wide bandgap
materials.

V. BRIEF: 2-D MATERIALS

While most presently studied 2-D materials have low
bandgaps compared to GaN/SiC, many transition-metal
dichalcogenides (TMDs) at least have larger gaps than silicon,
in the range 1.2–2 eV (with correspondingly higher critical
fields versus silicon [129]) and high mobilities in the hundreds
of cm2/Vs at room temperature [130]. In many cases, the more
symmetric band structures [131] of TMDs could allow for
better n-/p-matching, and the flexibility of Van der Waals
stacking [132] could allow for a great deal of mix-and-match.

MoS2 is a popular choice for n-channel FETs due to
the background of chalcogen atom vacancies [133], [134]
which tend to pin the Fermi-level near the conduction band;
conversely, WSe2 is widely used for p-channel FETs since it
has a larger chalcogen vacancy formation energy [135] and
a shallower valence band edge amenable to p-type contacts
[136]. Black phosphorus (BP) is another popular choice for
n- and p-channel FETs offering a wide range of tunable
bandgaps from 0.3 to 2.0 eV and large mobility of few hun-
dreds of cm2/Vs at room temperature [130]. Complementary
demonstrations so far have focused on these well-studied 2-D
materials, either single-material [137]–[141], or multimaterial
pairs [142]–[144].

While the above studies are valuable proofs to establish how
2-D devices can be integrated and what sort of approaches can
be useful to mitigate their difficulties [145]–[148], the focus
thus far on relatively narrow-gap materials puts most of this
field outside the purview of this text. Nonetheless, they lay
the groundwork for the further development of wider-gap
options such hexagonal boron nitride (hBN). This crystal has
an ultrawide bandgap of 6 eV [149], [150] which suggests it
may become a powerful candidate for high voltage electronics
as challenges in scalable growth [151], doping, and processing
are improved upon. Already hBN has served a supporting
role as a dielectric environment for sensitive 2-D FETs [152].
Since development in 2-D electronics is sure to continue
regardless (spurred more by scaling considerations than power
electronics), it is worth keeping an eye on this field for
wider-gap discoveries, cointegration demonstrations, or other
advances which can be adapted to the 3-D systems mentioned
here.

Fig. 8. (a) “MECA” integration from HRL Laboratories [153]. (b) MBE-
growth-in-windows integration from Raytheon [157]. (c) Heterogeneous
stacking from Intel Corporation [158]. (d) Output characteristics of a
complementary pair from Intel’s approach, replotted from [158].

VI. Si HETEROGENEOUS INTEGRATIONS

While a fully wide or ultrawide bandgap CMOS is tantaliz-
ing, it may in the near future be more cost-effective to produce
tightly integrated CMOS employing one high-performance
material and another manufacturable complement. Silicon
CMOS is the most advanced, dense, proven semiconductor
technology in existence, and, while it may not have the
exciting material properties of all these other systems, it could
fill in many of their flaws. So before this work completes,
it is worth touching on the progress in bringing together wide
bandgaps with intimate silicon control. Some researchers have
focused on integration at the die level, such as HRL Labo-
ratories’ Metal-Embedded Chip Assembly (MECA) scheme
[153], which electroforms a heatsink around multiple adjacent
dies such that they can be integrated via optically defined
interconnects, see Fig. 8(a), with neighboring dies about a
100 μm apart. Nonetheless, in keeping with the theme of this
review (prioritizing density of integration) this section will
focus on device-level approaches by highlighting examples
from Raytheon and Intel Corporation integrating GaN with
Silicon. (Other die- or device-level works include epitaxial
lift-off [154], mold compounds [155], or bonding hybrid
silicon orientations [156].)

Raytheon [157] demonstrated numerous cointegrations of
III–V materials, MEMS, and more with silicon by a variety
of means. In their GaN method, depicted in Fig. 8(b), the GaN
epi is grown in windows on an etched high-resistivity-handler
silicon-on-insulator (SOI) wafer. Silicon processing is com-
pleted first in a CMOS fab, then the growth to a coplanar
height is performed by molecular beam epitaxy (MBE) at a
compatible thermal budget, and finally GaN processing and
interconnects are performed in a III–V facility. Results are
claimed to be similar to GaN-on-SiC devices.

Recently, Intel [158] demonstrated a 3-D heterogeneous
stacking in which GaN devices are produced on a 300-mm
high-resistivity Si (111) wafer. The GaN-on-Si (111) wafer is
then oxide fusion-bonded to a Si (100) wafer with an etch
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stop layer that is thinned to 50 nm. Then CMOS processing
of the top Si surface continues, all in a CMOS fab, as shown
in Fig. 8(c). Altogether, this enables cointegration of high
performance E-mode GaN MOSHEMTs and Si pMOS with
matched characteristics, as shown in Fig. 8(d), and extreme
potential density.

The abovementioned approaches provide a valuable com-
promise which allows each material to accomplish what it is
best suited for, and, while they do not achieve every single
directive an all-wide bandgap system could (such as extreme
environment hardness), they are sure to be part of near-term
integrations and long-term hybrid systems, even as the all-wide
bandgap approaches mature.

VII. CONCLUSION

This review has taken a broad snapshot of the state of
CMOS-style logic on platforms from wide-gap (GaN, SiC)
to ultrawide-gap (hBN, diamond, AlN), and means of merging
these with silicon and each other. The maturity of the SiC plat-
form, despite its device limitations, suggests a well-motivated
path forward for other systems. GaN, perhaps aided by AlN
buffers, is its most likely competitor down the road, with
either advances in p-channel fabrication or the augmentation
of diamond p-channels as potential enablers. For systems
where high-temperature is less critical but frequency mat-
ters, the tighter integration of silicon with GaN is a highly
promising compromise. Other logic modes are possible, and
other hybrid designs are plausible, but this is where the battle
lines are drawn in 2020; only the upcoming decade can
answer which platforms and alliances will take each corner
of application space.
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