Crystal orientation dictated epitaxy of ultrawide-bandgap 5.4- to 8.6-eV α-(AlGa)2O3 on m-plane sapphire

Riena Jinno 1*, Celesta S. Chang 2,3, Takeyoshi Onuma 4, Yongjin Cho 1, Shao-Ting Ho 5, Derek Rowe 1, Michael C. Cao 5, Kevin Lee 1, Vladimir Protasenko 1, Darrell G. Schlom 5,6, David A. Muller 3,6, Huili G. Xing 1,5, Debdeep Jena 1,5‡

Ultrawide-bandgap semiconductors are ushering in the next generation of high-power electronics. The correct crystal orientation can make or break successful epitaxy of such semiconductors. Here, it is found that single-crystalline layers of α-(AlGa)2O3 alloys spanning bandgaps of 5.4 to 8.6 eV can be grown by molecular beam epitaxy. The key step is found to be the use of m-plane sapphire crystal. The phase transition of the epitaxial layers from the α- to the narrower bandgap β-phase is catalyzed by the c-plane of the crystal. Because the c-plane is orthogonal to the growth front of the m-plane surface of the crystal, the narrower bandgap pathways are eliminated, revealing a route to much wider bandgap materials with structural purity. The resulting energy bandgaps of the epitaxial layers span a broad range, heralding the successful epitaxial stabilization of the largest bandgap materials family to date.

INTRODUCTION

Since the middle of the last century, semiconductor materials have made a steady climb to the top of the periodic table to wider energy bandgaps. Starting from the early days of Ge to the Si revolution and the current wide-bandgap SiC and GaN materials, each new generation of semiconductors has enabled electronic, photonic, and sensing and actuation functions in regimes that were considered impossible before. Next-generation electronics and photonics need much larger bandgaps beyond the established material families. Ultrawide-bandgap (UWBG) semiconductor materials for power and microwave electronics and deep–ultraviolet (UV) photonics include Aluminum Nitride (AIN), Boron Nitride (BN), diamond, and Ga2O3 (1–4). The recent availability of single-crystal β-Ga2O3 substrates has generated substantial interest in this wide-bandgap semiconductor material family for high-voltage electronics and UV photonics (5, 6). However, efforts to create β-(AlGa)2O3 with high Al contents to obtain UWBGs to exceed the bandgap of ~6 eV available in the nitride material family in AIN have met a roadblock. Because β-(AlGa)2O3 is not the energetically favored crystal phase for large Al compositions, the crystal converts to competing structural phases when grown on β-Ga2O3 substrates (7–10). This leads to the intriguing question: Can single-phase and highly crystalline α-Al2O3 of bandgap Eg ~ 8.8 eV (11) and its alloys and heterostructures with α-Ga2O3 of bandgap Eg ~ 5.3 eV (12–14) be grown directly by molecular beam epitaxy (MBE) on α-Al2O3 (sapphire) substrates? If this can be done, and if these layers can be controllably doped, it will open new application arenas. The UWBG energies (~5.3 to 8.8 eV), a large portion of which is unachievable in the nitride semiconductor family, and the attractive dielectric constants (~11 for || c axis and ~ 9 for ⊥ c axis for α-Al2O3) (15, 16) offer the possibility to take semiconductor electronics and photonics into regimes that currently remain out of reach. In this work, we report that the first of these challenges can be met: High–crystalline quality, single-phase α-(AlGa)2O3 can be grown by MBE directly on m-plane sapphire, spanning bandgaps of ~5.3 to 8.8 eV, i.e., the entire Al composition of the alloy from 0 to 1. Although the conductivity control of all compositions is not achieved over the entire range of bandgaps yet, experimental evidence of n-type α-Ga2O3 and theoretical prediction for (AlGa)2O3 indicate that this may be feasible (17–19). The bandgaps and sharp heterostructures achieved by MBE put this material family beyond those that are available today, and the cost-effective, large-area substrates for achieving this are already available.

Significance of crystal orientation

The orientation of the substrate crystal determines the subsequent crystal phases in unique ways in this UWBG material family. Homoepitaxial growth of α-Al2O3 films has been reported on c-, α-, and r-plane substrates using MBE (20, 21) and pulsed laser deposition (PLD) (22, 23), but no study of their optical properties exist. On the other end of the α-(Al,Ga1−x)2O3 alloy system, single-crystalline α-Ga2O3 films and conductive, n-type doped films are successfully grown on c- and m-plane sapphire substrates by mist chemical vapor deposition (CVD) (12, 17) and halide vapor-phase epitaxy (HVPE) (24, 25). α-(AlGa)2O3 alloys have also been grown using MBE on a-plane (0 ≤ x ≤ 1) (26), mist-CVD on c-plane (0 ≤ x ≤ 0.81) (27–30), and PLD on r-plane sapphire substrates (0.92 ≤ x ≤ 1) (23). Among the growth methods, MBE and MOCVD offer the capability to maintain sharp interfaces across layers in quantum heterostructures of different alloy compositions (8, 21, 31, 32), as well as sharply controlled doping profiles, which are problematic with HVPE or mist-CVD techniques. MBE growth of α-(Al,Ga1−x)2O3 of high Ga content is...
The growth of β-Ga2O3 on c-plane sapphire substrates by MBE, MOCVD, and PLD has been found to have the epitaxial relationship of [33] β-Ga2O3 || (0001) α-Ga2O3 || (0001) sapphire, which causes this transition. As shown in Fig. 1A, if the hexagonal sapphire crystal plane is rotated from the c-plane (0001) sapphire, which cause this transition. In 2018, Kracht et al. attempted this strategy: They reported the growth of α-Ga2O3 on r-plane sapphire substrate with a film thickness of 217 nm ([14]). They observed that after c-plane facets were formed on the surface of the α-Ga2O3 film, the β-Ga2O3 appeared with the same epitaxial relationship of (201) β-Ga2O3 || (0001) α-Ga2O3/sapphire, as shown in Fig. 1B, indicating that the c-plane facet enhanced the growth of β-Ga2O3 in MBE. These results suggest that a sapphire crystal plane perpendicular to the c-plane, such as a- or m-planes, could potentially allow the growth of phase-pure α-Ga2O3 by avoiding facets, as shown in Fig. 1C. Nd-doped α-(AlxGa1−x)2O3 and α-Ga2O3 with a film thickness of 14 nm have been reported on a-plane sapphire in previous studies ([26, 34]). These prior studies provided x-ray diffraction (XRD) study of the layers, but the atomic crystal structure and optical properties remain unknown.

The MBE growth of α-(AlxGa1−x)2O3 material family on m-plane sapphire has not been investigated in detail. However, Sn-doped α-Ga2O3 of bandgap ~5.3 eV on m-plane sapphire grown by mist-CVD exhibits a room temperature electron mobility of 65 cm²/V·s at a high carrier density of n = 1.2 × 10¹⁸ cm⁻³ ([18]), suggesting promising electronic properties of α-(AlxGa1−x)2O3 on m-plane sapphire. High room temperature electron mobility of ~600 cm²/V·s was concluded for optically generated electrons in α-Al2O3, increasing to ~4000 cm²/V·s at low temperatures ([35]). A recent first-principles study predicts that Si can be an efficient shallow donor for high-Al content (AlxGa1−x)2O3 ([19]), to achieve n-type conductivity of (AlxGa1−x)2O3.

In 2021, Jinno et al. attempted to use this approach: They reported the growth of α-Ga2O3 on r-plane sapphire substrate with a film thickness of 217 nm ([14]). They observed that after c-plane facets were formed on the surface of the α-Ga2O3 film, the β-Ga2O3 appeared with the same epitaxial relationship of (201) β-Ga2O3 || (0001) α-Ga2O3/sapphire, as shown in Fig. 1B, indicating that the c-plane facet enhanced the growth of β-Ga2O3 in MBE. These results suggest that a sapphire crystal plane perpendicular to the c-plane, such as a- or m-planes, could potentially allow the growth of phase-pure α-Ga2O3 by avoiding facets, as shown in Fig. 1C. Nd-doped α-(AlxGa1−x)2O3 and α-Ga2O3 with a film thickness of 14 nm have been reported on a-plane sapphire in previous studies ([26, 34]). These prior studies provided x-ray diffraction (XRD) study of the layers, but the atomic crystal structure and optical properties remain unknown.

The MBE growth of α-(AlxGa1−x)2O3 material family on m-plane sapphire has not been investigated in detail. However, Sn-doped α-Ga2O3 of bandgap ~5.3 eV on m-plane sapphire grown by mist-CVD exhibits a room temperature electron mobility of 65 cm²/V·s at a high carrier density of n = 1.2 × 10¹⁸ cm⁻³ ([18]), suggesting promising electronic properties of α-(AlxGa1−x)2O3 on m-plane sapphire. High room temperature electron mobility of ~600 cm²/V·s was concluded for optically generated electrons in α-Al2O3, increasing to ~4000 cm²/V·s at low temperatures ([35]). A recent first-principles study predicts that Si can be an efficient shallow donor for high-Al content (AlxGa1−x)2O3 ([19]), to achieve n-type conductivity of (AlxGa1−x)2O3.

In 2018, Kracht et al. attempted this strategy: They reported the growth of α-Ga2O3 on r-plane sapphire substrate with a film thickness of 217 nm ([14]). They observed that after c-plane facets were formed on the surface of the α-Ga2O3 film, the β-Ga2O3 appeared with the same epitaxial relationship of (201) β-Ga2O3 || (0001) α-Ga2O3/sapphire, as shown in Fig. 1B, indicating that the c-plane facet enhanced the growth of β-Ga2O3 in MBE. These results suggest that a sapphire crystal plane perpendicular to the c-plane, such as a- or m-planes, could potentially allow the growth of phase-pure α-Ga2O3 by avoiding facets, as shown in Fig. 1C. Nd-doped α-(AlxGa1−x)2O3 and α-Ga2O3 with a film thickness of 14 nm have been reported on a-plane sapphire in previous studies ([26, 34]). These prior studies provided x-ray diffraction (XRD) study of the layers, but the atomic crystal structure and optical properties remain unknown.

The MBE growth of α-(AlxGa1−x)2O3 material family on m-plane sapphire has not been investigated in detail. However, Sn-doped α-Ga2O3 of bandgap ~5.3 eV on m-plane sapphire grown by mist-CVD exhibits a room temperature electron mobility of 65 cm²/V·s at a high carrier density of n = 1.2 × 10¹⁸ cm⁻³ ([18]), suggesting promising electronic properties of α-(AlxGa1−x)2O3 on m-plane sapphire. High room temperature electron mobility of ~600 cm²/V·s was concluded for optically generated electrons in α-Al2O3, increasing to ~4000 cm²/V·s at low temperatures ([35]). A recent first-principles study predicts that Si can be an efficient shallow donor for high-Al content (AlxGa1−x)2O3 ([19]), to achieve n-type conductivity of (AlxGa1−x)2O3.

In 2018, Kracht et al. attempted this strategy: They reported the growth of α-Ga2O3 on r-plane sapphire substrate with a film thickness of 217 nm ([14]). They observed that after c-plane facets were formed on the surface of the α-Ga2O3 film, the β-Ga2O3 appeared with the same epitaxial relationship of (201) β-Ga2O3 || (0001) α-Ga2O3/sapphire, as shown in Fig. 1B, indicating that the c-plane facet enhanced the growth of β-Ga2O3 in MBE. These results suggest that a sapphire crystal plane perpendicular to the c-plane, such as a- or m-planes, could potentially allow the growth of phase-pure α-Ga2O3 by avoiding facets, as shown in Fig. 1C. Nd-doped α-(AlxGa1−x)2O3 and α-Ga2O3 with a film thickness of 14 nm have been reported on a-plane sapphire in previous studies ([26, 34]). These prior studies provided x-ray diffraction (XRD) study of the
Motivated by the above reasons, in this study, we explore growth of this UWBG semiconductor family on m-plane sapphire substrates. We find that the MBE growth of α-(Al$_{x}$Ga$_{1-x}$)$_2$O$_3$ on m-plane sapphire solves the faceting problem completely, allowing its bandgap engineering over the entire composition range to be achieved. A series of epitaxial layers of α-(Al$_{x}$Ga$_{1-x}$)$_2$O$_3$ with $x = 0.0$ to 1.0 and thicknesses ranging from ~50 to 85 nm were grown by oxygen plasma-assisted MBE on m-plane sapphire substrates. The growth and subsequent structural, chemical, and optical characterization methods are described in Materials and Methods.

RESULTS AND DISCUSSION

Single-crystal UWBG epitaxial layers

Symmetric XRD 2θ/ω scans of the samples are displayed in a logarithmic intensity scale in Fig. 2A. The profiles reveal that the diffraction peak is from the α-(Al$_{x}$Ga$_{1-x}$)$_2$O$_3$ 3030 reflection at angles slightly lower than that of the sapphire substrate. There are no peaks originating from other crystal phases or other planes. With decreasing Al composition x, the peaks from α-(Al$_{x}$Ga$_{1-x}$)$_2$O$_3$ 3030 monotonically shift to lower angles without any compositional segregation, suggesting a higher Ga composition in the film. No additional peaks or fringes are observed for the MBE-grown α-Al$_2$O$_3$ layer grown on m-plane sapphire. The atomic concentrations of typical impurities (H, B, C, Na, and Si) are indicated by the axis on the left, while secondary intensities of Al and O are shown on the axis on the right. The intensities of Al and O in the epitaxial layer are observed to be identical to that in the m-plane sapphire substrate, suggesting growth of stoichiometric Al$_2$O$_3$. Compared to the sapphire substrate, a large B peak is seen at the growth interface, which is a marker indicating that the film thickness of the MBE-grown α-Al$_2$O$_3$ epitaxial layer is ~60 nm. There is an increase in the Si concentration at the growth interface, whereas the H and C concentrations in the epitaxial layer remain identical to the m-plane sapphire bulk substrate. The profiles for H and C represent the background levels of the measurements since densities of ~1018 cm$^{-3}$ are not expected in sapphire substrates. The Na concentration is ~1016 cm$^{-3}$. At present, we assume that the source of B is the PBN crucibles used for the MBE source materials, that of Si is from the quartz tube used as a component of the O plasma source, and that of Na is from the sapphire substrate. Si could accumulate during the substrate treatment using O plasma before growth as discussed in Materials and Methods.

To evaluate the strain in the epitaxial films, asymmetrical reciprocal space maps (RSMs) for 2240 reflections were taken. Figure 3A shows the relation between the (2230) and (1010) m-plane of the corundum structure. These results indicate that the α-(Al$_{x}$Ga$_{1-x}$)$_2$O$_3$ films ($0.37 \leq x \leq 0.74$) consist of coherent and relaxed layers, and the relaxed layers are subject to slight in-plane compressive strain (Fig. 3, C to F). On the other hand, the α-(Al$_{x}$Ga$_{1-x}$)$_2$O$_3$ films ($x < 0.37$) were completely lattice-relaxed because of the lattice mismatch with the sapphire substrate (Fig. S1). Because 2240 decomposes into 3030 + $\bar{1}$210, the directions of Q_2 and Q_x are along 1010 (the growth direction) and $\bar{1}$210 (one of the a axes), respectively. The dashed red line intersects the theoretical positions of sapphire [$[Q_o, Q_x] = (-0.402, 0.728)$] and α-Ga$_2O_3$ 2240 reflection [$[Q_o, Q_x] = (-0.401, 0.695)$]. The α-Al$_2O_3$ homoeptaxial film shows a streak along $Q_x = -0.42 \text{ Å}^{-1}$ (Fig. 3B), which is also observed for the reflections at $Q_x = -0.42 \text{ Å}^{-1}$ in the samples whose x is larger than 0.37. The vertical streak arises from a small film thickness. Two reflection peaks of α-(Al$_{x}$Ga$_{1-x}$)$_2$O$_3$ are obtained at x between 0.37 and 0.74: One is on the same Q line ($Q_x = -0.42$) as that of the sapphire substrate and the other is located between the dashed line and $Q_x = -0.42 \text{ Å}^{-1}$ (Fig. 3, C to F).

Figure 4 shows the surface atomic force microscopy (AFM) images of the m-plane sapphire substrate and the epitaxial α-(Al$_{x}$Ga$_{1-x}$)$_2$O$_3$ films. The surface morphology of the as-received
substrate was extremely smooth with a root mean square (RMS) roughness as small as 0.079 nm (Fig. 4A). The α-Al2O3 epitaxial film shows a small RMS roughness of 0.32 nm (Fig. 4B) but does not exhibit atomic steps, which are not observed on the starting substrate either. Curiotto et al. reported a step-terrace morphology for m-plane sapphire substrates by annealing under Ar-O2 at 1235 K for 78 hours (36), suggesting thermal treatment for potential improvement of the surface morphology of α-Al2O3 films in the future. When the Al mole fraction x is smaller than 0.54, the RMS roughness remains smaller than 1.1 nm (Fig. 4, E to H). For x = 0.59 and x = 0.74, α-(AlxGa1−x)2O3 films have rougher surface morphologies of 3.5 and 1.42 nm RMS values (Fig. 4, C and D), probably due to the low substrate temperature of 650°C.

Electron microscopy reveals single-crystalline UWBG layers

The XRD spectra showed the growth of single-phase α-(AlxGa1−x)2O3 films on m-plane sapphire substrates. To investigate the atomic details of the crystal structures of the epitaxial layers, high-angle annular dark-field STEM (HAADF-STEM) images were taken on the cross-sectional α-(AlxGa1−x)2O3 samples for x = 1, x = 0.37, x = 0.22,
and \(x = 0 \). All the images were viewed along the \(\langle 0001 \rangle \) zone axis. Figure 5 shows the cross-sectional images of the \(\alpha-(Al_xGa_{1-x})_2O_3 \) film series grown on m-plane sapphire substrates and the corresponding enlarged images at the interfaces. As shown in Fig. 5A, since the epitaxial \(\alpha-Al_2O_3 \) layer and the substrate have the same contrast, the exact location of the interface is invisible. On the basis of the corroborating SIMS measurement of Fig. 2B, an enlarged image was taken at the interface that was formed 60 nm below the surface. The uniformity of the crystal structure indicates that epitaxial \(\alpha-Al_2O_3 \) films grow homoepitaxially on m-plane sapphire substrate with no visible structural defects.

On the other hand, a clear contrast between the epitaxial film and the substrate is seen for the images of the \(\alpha-(Al_{0.37}Ga_{0.63})_2O_3 \), \(\alpha-(Al_{0.22}Ga_{0.78})_2O_3 \), and \(\alpha-Ga_2O_3 \) samples (Fig. 5, B to D). The low-magnification images reveal that these films grow uniformly on m-plane sapphire substrates. Contrast variations inside the film are due to strain relaxation by misfit dislocations near the substrate interface. The edge dislocation density is estimated at \(\sim 5 \times 10^5 \) cm\(^{-1} \) (or \(\sim 10^{11} \) cm\(^{-2} \)) from the cross-sectional TEM sample of \(\alpha-(Al_{0.37}Ga_{0.63})_2O_3 \) in the range also corroborated by x-ray rocking curves as shown in fig. S2 and table S2 discussed in the Supplementary Materials. This is consistent with the incoherent nature of the \(\alpha-(Al_{0.37}Ga_{0.63})_2O_3 \) epitaxial layer indicated by RSM of Fig. 3F compared to the coherent \(\alpha-Al_2O_3 \) epitaxial layer in Fig. 3B. No notable phase separation or compositional segregation is observed in the epitaxial layers: They are phase pure. The film thicknesses of the \(\alpha-(Al_{0.37}Ga_{0.63})_2O_3 \), \(\alpha-(Al_{0.22}Ga_{0.78})_2O_3 \), and \(\alpha-Ga_2O_3 \) films are measured to be 66, 57, and 60 nm, respectively, which agree well with the thicknesses \((d) \) estimated from x-ray reflectivity (XRR) measurements (table S1). The enlarged images show that sharp heterojunction interfaces are formed between the epitaxial films and the substrates and that the \(\alpha-(Al_{x}Ga_{1-x})_2O_3 \) \((x \leq 0.37) \) films have an identical crystal structure and orientation to the substrate. \(\alpha-Ga_2O_3 \) films show dislocations at the interface due to lattice mismatch (Fig. 5D and fig. S3); however, no secondary phases were observed. The combination of the STEM images with XRD thus indicates that single-crystalline, single-phase epitaxial films are successfully grown on the m-plane sapphire substrate over the full \(0 \leq x \leq 1 \) composition range.

Deep-UV spectroscopy reveals UWBGs

Figure 6A shows the optical transmittance spectra of the \(\alpha-(Al_{x}Ga_{1-x})_2O_3 \) films \((T) \) and a bare m-plane sapphire substrate control sample \((T_s) \) as a function of the photon energy \((\hbar \nu) \). Each epitaxial film shows the same high transparency in the visible and UV spectral ranges as the substrate. The bandgaps of the epitaxial \(\alpha-(Al_{x}Ga_{1-x})_2O_3 \) layers are clearly observed despite their small thicknesses, indicating strong photon absorption. Note that the transmittance of...
\(\alpha-(Al_{0.37}Ga_{0.63})_2O_3 \) appears lower than the other samples because of a smaller sample size of this particular sample than the optical aperture. Each absorption coefficient \(\alpha \) was calculated using the equation \(\frac{T}{T_0} = \exp(-\alpha d) \), and \((\alpha h)^2\) is plotted as a function of \(h \) in Fig. 6B. When \(x = 0 \) and 0.22, the absorption edge exhibits a double step-like onset, while the \(\alpha-(Al_xGa_{1-x})_2O_3 \) \(x \geq 0.37 \) has a single step onset. The observation of double step-like onset in \(\alpha-Ga_2O_3 \) thin films has been reported earlier, suggesting two allowed direct optical interband transitions (13, 14). The Ga-rich \(\alpha-(Al_xGa_{1-x})_2O_3 \) films \(0 \leq x \leq 0.37 \) show broader absorption onsets than the Al-rich samples, which is related to the slightly indirect bandgap character of \(\alpha-Ga_2O_3 \) (13).

Direct optical bandgap energies of the \(\alpha-(Al,Ga)_{1-x}O_3 \) films were estimated from the relationship of \((\alpha h)^2\) versus \((h-E_g)\). As shown by the red filled circles in Fig. 6C, the experimental direct bandgaps monotonically increase as the Al composition \(x \) increases. In Fig. 6D, the black solid line shows the theoretical direct bandgap energies calculated by Peelaers et al. (37) using hybrid density functional theory. The experimentally measured bandgaps of the \(\alpha-(Al,Ga)_{1-x}O_3 \) epitaxial layers are, for the most part, in excellent agreement. A \(~0.2 \text{ eV}\) lower than the predicted values from the simple Tauc plots of \((\alpha h)^2\) versus \((h-E_g)\) may be due to an underestimation of the bandgap energy owing to excitonic absorption with low-energy tails, related to the slightly indirect character of \(\alpha-Ga_2O_3 \) and to as-yet unknown defects (13). The bowing parameter \(b \) is obtained from \(E_g(x) = (1-x)E_g[\text{Ga}_2O_3] + xE_g[\text{Al}_2O_3] - bx(1-x) \), where \(E_g[\text{Ga}_2O_3] \) and \(E_g[\text{Al}_2O_3] \) are the bandgap energies of \(\alpha-Ga_2O_3 \) and \(\alpha-Al_2O_3 \), respectively, by fitting the plot as depicted by the red

Fig. 6. Optical transmittance spectra and bandgap energies of the \(\alpha-(Al,Ga)_{1-x}O_3 \) films. (A) Optical transmittance of the \(\alpha-(Al,Ga)_{1-x}O_3 \) films and substrate. (B) \((\alpha h)^2\)-\(h\) plot as a function of the Al composition. The \(\alpha-(Al_{0.37}Ga_{0.63})_2O_3 \) film exhibited a lower transmittance than the other samples since the sample was smaller than the aperture for the transmittance measurement. The appearance of higher transparency of the samples with \(x = 0 \) and 0.22 is due to different measurement systems. Compared to the absorption spectra of the bulk \(\alpha-Al_2O_3 \) substrate, the transmittance and absorption spectra of the \(\alpha-Al_2O_3 \) epitaxial sample shows absorption around 7 to 8.5 eV and what appears as a slight red shift in the fundamental absorption edge. Both are attributed to absorption by sub-bandgap defect states (likely O and/or Al interstitials or vacancies) since the TEM image in Fig. 5A does not show extended defects, nor does the SIMS profile (Fig. 2B). Direct bandgaps (solid symbols) for the \(\alpha-(Al,Ga)_{1-x}O_3 \) films as a function of the Al composition are shown in (C) the wide range from 0 to 10 eV and (D) the UWBG region \((E_g > 4 \text{ eV})\). The red dashed line is a quadratic fit to the direct bandgaps. The black solid line is a quadratic fit to the computed direct bandgap for the corundum structure as reported in (37). The bandgaps for AlGaN and AlGaAs are also shown for comparison in (C) (38).
dashed line. The value of b is estimated to be 1.1 eV. This experimental value agrees well with the theoretically calculated value of 1.37 eV and proves the UWBG nature of the epitaxial layers available for bandgap engineering from 5.4 to 8.6 eV.

In conclusion, we have demonstrated the successful epitaxial stabilization of UWBG single-phase α-(Al,Ga)$_{2}$O$_{3}$ films over the entire composition range on m-plane sapphire substrates by MBE by avoiding phase transformation with the choice of crystal orientation for epitaxy. Cross-sectional HAADF-STEM images reveal that single-phase, single-crystalline α-(Al,Ga)$_{1-x}$O$_{3}$ epitaxial films are formed, by avoiding the formation of c-plane facets. By varying the Al$_{2}$O$_{3}$ and Ga$_{2}$O$_{3}$ films due to homoepitaxial growth. The film thicknesses of the samples were measured, while SIMS was used to determine the chemical impurities. The Al concentration (d) in the films was varied from 0 to 1 by regulating the beam equivalent pressures (BEPs) of Ga [(0 to 2) × 10$^{-8}$ torr] and Al [(0 to 1.6) × 10$^{-8}$ torr]. Before each growth, the film thicknesses (T_{sub}) of the samples were measured by XRR.

SUPPLEMENTARY MATERIALS

MATERIALS AND METHODS

Materials

All films reported in this work were grown on double-side polished m-plane (0110) sapphire substrates in the Veeco Gen930 MBE System equipped with standard effusion cells for elemental Ga and Al and a radio frequency (RF) plasma source for active oxygen species. The pressure in the growth chamber was 10$^{-5}$ to 10$^{-6}$ torr during the growth runs. For the growth of α-(Al,Ga)$_{1-x}$O$_{3}$ films ($x > 0.37$), the input RF power and oxygen flow rate were fixed at 250 W and 0.50 sccm (standard cubic centimeters per minute), respectively. The α-Al$_2$O$_3$ and α-(Al,Ga)$_{1-x}$O$_{3}$ films (1 $\leq x \leq 0.37$) were grown for 2 hours at thermocouple substrate temperatures (T_{sub}) of 750°C and 650°C, respectively. The α-(Al,Ga)$_{1-x}$O$_{3}$ film ($x = 0.22$ and 0) samples were grown at $T_{sub} = 650°C$ using the input RF power of 260 W and the oxygen flow rate of 0.23 sccm. The growth times of α-(Al$_{0.22}$Ga$_{0.78}$)$_2$O$_3$ and α-Ga$_2$O$_3$ were 3 hours and 3 hours 13 min, respectively. The Al concentration (x) in the films varied from 0 to 1 by regulating the beam equivalent pressures (BEPs) of Ga [(0 to 1.1) × 10$^{-8}$ torr] and Al [(0 to 1.6) × 10$^{-8}$ torr]. Before each growth, the m-plane sapphire substrates were subjected to an oxygen plasma treatment in the growth chamber for 10 min at $T_{sub} = 800°C$.

Characterization of materials

Structural properties and surface morphology of the samples were characterized by XRD measurements, AFM, and STEM. The film thicknesses of the samples ($x < 1$) were determined by XRR measurements, while SIMS was used to determine the chemical impurity species as well as the thickness of the α-Al$_2$O$_3$ epitaxial layer, since there were no thickness fringes observed from the XRR profile for the α-Al$_2$O$_3$ film due to homoepitaxial growth. The film thicknesses were in the range of 56 to 84.3 nm. Table S1 summarizes the Al and Ga BEPs and film thicknesses (d) of the samples. The Al composition was estimated by XRD and x-ray photoelectron spectroscopy (XPS). Optical bandgaps of the films were estimated by analyzing the optical transmission spectra; an m-plane sapphire substrate was used as a reference sample. The optical transmission spectra were measured at room temperature using a Varian Cary 50 UV–Vis spectrometer with a wavelength range of 190 to 800 nm for $x < 0.22$ and a Bunkoukeiki KV-201 vacuum UV spectrophotometer with a wavelength range of 140 to 300 nm for $x \geq 0.37$.

Transmission electron microscopy measurement

Cross-sectional TEM specimens were prepared using a FEI Strata 400 Focused Ion Beam with a final milling step of 5 kV to reduce damage. Carbon and platinum protective layers were deposited before milling to minimize ion-beam damage. The samples were then examined by STEM, using an aberration-corrected Titan Themis operating at 300 kV.

REFERENCES AND NOTES

8. S. W. Kaun, F. Wu, J. S. Speck, β-(Al$_{0.72}$Ga$_{0.28}$)$_2$O$_3$–Ga$_2$O$_3$ (010) heterostructures grown on β-Ga$_2$O$_3$ (010) substrates by plasma-assisted molecular beam epitaxy. J. Vac. Sci. Technol. 33, 041508 (2015).

Acknowledgments: We acknowledge useful discussions with M. Thompson, F. Rana, M. J. Candless, Y. -T. Shao, and N. Tanen of Cornell University and K. Chabak, A. Neal, A. Green, S. Mou, and T. Abel of the Air Force Research Laboratories. Funding: This work was, in part, supported by JSPS Overseas Challenge Program for Young Researchers 1080033 and by the Air-Force/Cornell Center for Epitaxial Solutions (ACCESS) center of excellence monitored by A. Sayir. C.S.C. acknowledges support from the Air Force Office of Scientific Research (FA9550-18-1-0529). Author contributions: R.J., Y.C., and D.J. conceived the study and designed the experimental study. R.J., C.S.C., T.O., S.-T.H., D.R., M.C.C., and K.L. performed the experiments. R.J., C.S.C., T.O., and Y.C. conducted the subsequent data analysis. R.J., C.S.C., and D.J. wrote the manuscript. V.P., D.G.S., D.A.M., and H.G.K. contributed ideas and feedback on the analysis and edited the manuscript. All authors edited the manuscript and approved its final version. Competing interests: The authors declare that they have no competing interests. Data and materials availability: All data needed to evaluate the conclusions in the paper are present in the paper and/or the Supplementary Materials. Additional data related to this paper may be requested from the authors. Submitted 30 June 2020 Accepted 16 November 2020 Published 8 January 2021 10.1126/sciadv.abd5891 Citation: R. Jinno, C. S. Chang, T. Ohnuma, Y. Cho, S.-T. Ho, D. Rowe, M. C. Cao, K. Lee, V. Protasenko, D. G. Schiom, D. A. Muller, H. G. Xing, D. Jena. Crystal orientation dictated epitaxy of ultrawide-bandgap 5.4- to 8.6-eV α-(AlGa)₂O₃ on m-plane sapphire. Sci. Adv. 7, eabd5891 (2021).
Crystal orientation dictated epitaxy of ultrawide-bandgap 5.4- to 8.6-eV α-(AlGa)$_2$O$_3$ on m-plane sapphire

Riena Jinno, Celesta S. Chang, Takeyoshi Onuma, Yongjin Cho, Shao-Ting Ho, Derek Rowe, Michael C. Cao, Kevin Lee, Vladimir Protasenko, Darrell G. Schlom, David A. Muller, Huili G. Xing and Debdeep Jena

Sci Adv 7 (2), eabd5891.
DOI: 10.1126/sciadv.abd5891

ARTICLE TOOLS
http://advances.sciencemag.org/content/7/2/eabd5891

SUPPLEMENTARY MATERIALS
http://advances.sciencemag.org/content/suppl/2021/01/04/7.2.eabd5891.DC1

REFERENCES
This article cites 39 articles, 1 of which you can access for free
http://advances.sciencemag.org/content/7/2/eabd5891#BIBL

PERMISSIONS
http://www.sciencemag.org/help/reprints-and-permissions

Use of this article is subject to the Terms of Service

Science Advances (ISSN 2375-2548) is published by the American Association for the Advancement of Science, 1200 New York Avenue NW, Washington, DC 20005. The title Science Advances is a registered trademark of AAAS.

Copyright © 2021 The Authors, some rights reserved; exclusive licensee American Association for the Advancement of Science. No claim to original U.S. Government Works. Distributed under a Creative Commons Attribution NonCommercial License 4.0 (CC BY-NC).
Supplementary Materials

Table S1. The Al and Ga BEPs and film thicknesses of the α-(Al$_{x}$Ga$_{1-x}$)$_2$O$_3$ films grown on m-plane sapphire substrates.

<table>
<thead>
<tr>
<th>x</th>
<th>0</th>
<th>0.22</th>
<th>0.37</th>
<th>0.54</th>
<th>0.59</th>
<th>0.74</th>
<th>1</th>
</tr>
</thead>
<tbody>
<tr>
<td>Al BEP (10$^{-9}$ Torr)</td>
<td>0</td>
<td>1.5</td>
<td>4.9</td>
<td>9</td>
<td>9</td>
<td>9</td>
<td>16</td>
</tr>
<tr>
<td>Ga BEP (10$^{-9}$ Torr)</td>
<td>9</td>
<td>7.5</td>
<td>9</td>
<td>4.7</td>
<td>3</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>Film thickness d (nm)</td>
<td>57</td>
<td>56</td>
<td>66</td>
<td>84.3</td>
<td>63.8</td>
<td>58.1</td>
<td>~60</td>
</tr>
</tbody>
</table>

Reciprocal Space Maps of α-Ga$_2$O$_3$ and α-(Al$_{0.18}$Ga$_{0.82}$)$_2$O$_3$ on m-plane Sapphire Substrates

Asymmetric RSMs were measured for the α-Ga$_2$O$_3$ and α-(Al$_{0.18}$Ga$_{0.82}$)$_2$O$_3$ epitaxial films grown on m-plane sapphire substrates. The growth conditions of the films are similar to what is discussed in the main text. The film thicknesses of the α-Ga$_2$O$_3$ and α-(Al$_{0.18}$Ga$_{0.82}$)$_2$O$_3$ determined by XRR measurements were 52 and 57 nm. As shown in Fig. S1, both α-Ga$_2$O$_3$ and α-(Al$_{0.18}$Ga$_{0.82}$)$_2$O$_3$ films, though single-crystalline, are lattice-relaxed due to the large lattice mismatch to the sapphire substrates. This is similar to the growth of GaN on SiC, Sapphire, or Silicon.

Symmetric XRD ω-Scan

The tilt in the MBE grown α-(Al$_{x}$Ga$_{1-x}$)$_2$O$_3$ films on m-plane sapphire substrates was estimated by performing symmetric ω-scan rocking curve measurements for the α-Ga$_2$O$_3$, α-(Al$_{0.18}$Ga$_{0.82}$)$_2$O$_3$ films shown in Fig S1(a) and (b), and the α-(Al$_{0.54}$Ga$_{0.46}$)$_2$O$_3$ film discussed in the main paper. The full-width at half maximum (FWHM) of the ω-scan (β) for $x=0$ is 0.58 degree (2088 arcsec) [Fig. S1(c)], a value close to α-Ga$_2$O$_3$ grown on m-plane sapphire by mist-CVD (34). The sample with the higher Al content shows a smaller FWHM of the ω-scan due to the smaller lattice mismatch between the film and the substrate [Fig. S1(c)]. The screw dislocation density (D_B) was estimated using the random distribution formula proposed by Dunn and Koch (40):

$$D_B = \frac{\beta^2}{9b^2}. \quad (1)$$

Here, we have assumed the burgers vector (b) of $<10\overline{1}0>$. The estimated screw dislocation density is of the order $\sim 10^{10}$ cm$^{-2}$ for $x=0, 0.18, 0.54$ samples.
Reciprocal space maps \((Q_x, Q_z)\) around the 224_0 reflections of the (a) \(\alpha\)-Ga_2O_3 and (b) \(\alpha\)-(Al_{0.18}Ga_{0.82})_2O_3 epitaxial films. (c) Symmetric (30_3_0) rocking curves of the \(\alpha\)-(Al_{x}Ga_{1-x})_2O_3 films with \(x\) = 0, 0.18 and 0.54.

XRD In-Plane Measurements and Skew-Symmetric \(\omega\)-Scan

We measured the XRD in-plane \(2\theta_\phi/\phi\) scans for \(\alpha\)-(Al_{x}Ga_{1-x})_2O_3 films with \(x\) = 0, 0.5 and 1 using Cu K\(\alpha\) (K\(\alpha_1 + K\alpha_2\)) radiation without a monochromator. The growth conditions of these samples are similar to what is described in the main text. The in-plane \(2\theta_\phi/\phi\) scans can detect inclusions in thin films that are difficult to be observed in symmetric \(2\theta/\omega\) scans (12). Figures S2(a) and (b) plot the measured XRD spectra for (0006) and (1120) planes of the \(\alpha\)-(Al_{x}Ga_{1-x})_2O_3 films, respectively. The diffraction peaks from the \(\alpha\)-(Al_{x}Ga_{1-x})_2O_3 0006 and 1120 shift to higher angle with increasing Al composition \(x\). No peaks from other crystal phases or other planes are observed. The \(2\theta_\phi/\phi\) scans for the \(\alpha\)-(Al_{x}Ga_{1-x})_2O_3 1120 detect diffraction peaks originating from Cu K\(\beta\) radiation since the incident x-ray was not monochromatic. The profile for the \(\alpha\)-Ga_2O_3 film displays the peak from sapphire 1120, but no intensity from sapphire 0006. On the other hand, the profiles for \(x\) = 0.5 do not show diffraction peaks arising from sapphire substrates for both planes. This is because of the short penetration length of the x-ray of around 50 nm in the in-plane measurement, and it can also be attributed to the smaller intensity of the 0006 reflection than the 1120 one.

To investigate tilt and twist values in the films, we also measured skew symmetric \(\omega\)-scan profiles for the samples with \(x\) = 0 and 0.5. The tilt and twist can be separated using the equation \(\beta_{hkl}^2 = (\beta_{\text{tilt}} \cos \chi)^2 + (\beta_{\text{twist}} \sin \chi)^2\) (41). Here, \(\beta_{hkl}\) is the \(\omega\)-FWHM of the \(hkl\) reflection and this is
particularly useful for highly defective films. A series of skew symmetric ω-FWHM versus χ angle gives both tilt and twist. In this study, the ω-FWHM of the 3030, 1120, 0330, and 1014 reflections were used [Fig. S2(c) and (d)]. The ω-FWHM of the 1014 reflection was obtained only for x=0 since the 1014 reflections of α-(Al\textsubscript{x}Ga\textsubscript{1-x})\textsubscript{2}O\textsubscript{3} and sapphire are too close. The screw and edge dislocation densities were estimated using the Dunn and Koch formula of equation (1) by assuming the burgers vectors of <1120> and <0001>, as summarized in Table S2. The edge dislocation densities with b=<1120> and <0001> were on the order of 1011 and 109 cm-2, respectively. The density with b=<1120> agree with that (1011 cm-2) obtained from TEM observation for Al composition of x=0.37. The edge dislocation with the burgers vector of <1120> was also dominant in the α-Ga\textsubscript{2}O\textsubscript{3} film grown on c-plane sapphire by mist-CVD where a dislocation density of 7×1010 cm-2 was reported (42).

Fig. S2. XRD in-plane 2θ/φ scan profiles and ω-scan FWHM of the α-(Al\textsubscript{x}Ga\textsubscript{1-x})\textsubscript{2}O\textsubscript{3} films (x=0, 0.5). (a) 0006 and (b) 1120 XRD in-plane 2θ/φ scan profiles of α-(Al\textsubscript{x}Ga\textsubscript{1-x})\textsubscript{2}O\textsubscript{3} films with x= 0, 0.5 and 1. The black dots in (b) denote the diffraction peaks originating from the Cu Kβ radiation. ω-scan FWHM taken from a series of reflections at increasing angle χ with respect to the 3030 planes for the α-(Al\textsubscript{x}Ga\textsubscript{1-x})\textsubscript{2}O\textsubscript{3} films with (c) x= 0, and (d) x= 0.5.
Table S2. Summary of screw and edge dislocation density in the α-(Al_{1-x}Ga_{x})_{2}O_{3} films grown on m-plane sapphire substrates (x=0 and 0.5).

<table>
<thead>
<tr>
<th>x</th>
<th>Screw</th>
<th>Edge <1120></th>
<th>Edge <0001></th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>2.8×10^{10} cm^{-2}</td>
<td>1.2×10^{11} cm^{-2}</td>
<td>3.4×10^{9} cm^{-2}</td>
</tr>
<tr>
<td>0.5</td>
<td>2.3×10^{10} cm^{-2}</td>
<td>1.3×10^{11} cm^{-2}</td>
<td></td>
</tr>
</tbody>
</table>

Observation of Defects in α-Ga_{2}O_{3} by TEM Imaging

To further confirm that the samples grown are single phase, we performed selected area electron diffraction (SAED) imaging using FEI T-12 operating at 120 kV. Figure S3 shows an example of the epitaxial α-Ga_{2}O_{3} sample. The electron diffraction pattern for the α-Ga_{2}O_{3}/m-plane sapphire shows two ‘concentric’ hexagonal patterns [Fig. S3(a)]. The lattice constant of sapphire is smaller than that of α-Ga_{2}O_{3}, resulting in the hexagonal diffraction pattern of the sapphire being slightly further from the center. In Fig. S3(b), the dark-field TEM image is color-coded in red and blue, where each color shows the signals coming from the inner α-Ga_{2}O_{3} (circled in red) and outer sapphire diffraction spot (circled in blue) from Fig. S3(a). The α-Ga_{2}O_{3} epitaxial layer is not completely red, because strain has distorted the lattice and therefore some regions in the film are not perfectly on the same crystal zone axis.

HAADF-STEM images at the α-Ga_{2}O_{3}/α-Al_{2}O_{3} heterojunction show that the α-Ga_{2}O_{3} layer is relaxed at the interface through the introduction of misfit dislocations [Fig. S3(c)]. In addition, some isolated areas near the substrate interface exhibit a crystal structure different from α-Ga_{2}O_{3} [Fig. S3(d)]. In contrast to the α-Ga_{2}O_{3} viewed down along <0001> zone axis, the defective region displays a distinctive pattern of edge-sharing rings. The schematic explains how such defective regions can form. When α-Ga_{2}O_{3} is viewed along the <0001> zone axis, the Ga atoms arrange in a traditional hexagonal-closed-packed (hcp) structural form, as shown in the green atomic lattice structure. Here the following displacements occur: the yellow crystal structure, identical to the green, glides by two-thirds of the unit cell along the <1120> axis (horizontal direction). As HAADF-STEM images are obtained by averaging through several unit cells in projection, such a glide can result in the overlap seen in the lattice structure in the image resulting in the observed chained hexagonal lattice regions. This displacement is found to occur in different glide directions and distances as well, resulting in distinctive lattice structures in some isolated regions in the film. This stacking fault seems to originate at the interface, perhaps caused by the strain at the interface. In addition to α-Ga_{2}O_{3}, this defect was also observed in the low Al-content α-(Al_{0.23}Ga_{0.78})_{2}O_{3} films. For α-(Al_{0.37}Ga_{0.63})_{2}O_{3}, we observed regions with poor lattice contrast inside the film, which we believe is potentially caused by defective regions including edge dislocations that jog along the projection direction. Although the dislocations and the stacking faults exist near at the heterointerface in the high Ga-content α-(Al_{1-x}Ga_{x})_{2}O_{3} layers, STEM images indicate single-crystalline, single phase epitaxial films are successfully grown on the m-plane sapphire substrate over the full 0≤x≤1 composition range. No defects are observable in STEM in the α-Al_{2}O_{3} epitaxial layer.
Fig. S3. Cross-sectional STEM images of the α-(Al_{x}Ga_{1-x})_{2}O_{3} film with x=0. (a) Diffraction yields two similar hexagonal patterns each originating from α-Ga_{2}O_{3} and sapphire. As the lattice constant of sapphire is slightly smaller than that of α-Ga_{2}O_{3}, the outer diffraction spot of the two adjacent spots shown (circled in blue) corresponds to sapphire as shown in (b). The inner spot (circled in red) corresponds to the α-Ga_{2}O_{3} film. False-color dark-field image overlay corresponding to each diffraction spots circled in blue and red are shown in (b), together with a HAADF-STEM image. The dark-field image of the α-Ga_{2}O_{3} film is not completely color-coded in red as the strain has distorted the lattice. (c) Enlarged epitaxial interface reveals the atomic structure that is relaxing the strain. The schematic shows the corresponding edge dislocation. (d) Defective areas showing different hexagonal crystal structure from that of α-Ga_{2}O_{3} that is caused by strain at the interface. A schematic of α-Ga_{2}O_{3} crystal structure is also shown to explain how such hexagonal crystal lattices can form. When the yellow α-Ga_{2}O_{3} crystal structure glides by two-thirds of the unit cell along the <1120> axis, the resulting crystal structure appears as a chained hexagonal structure when seen in projection in TEM.
REFERENCES AND NOTES

